mindspore.nn.polynomial_decay_lr
- mindspore.nn.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power, update_decay_epoch=False)[source]
- Calculates learning rate base on polynomial decay function. The learning rate for each step will be stored in a list. - For the i-th step, the formula of computing decayed_learning_rate[i] is: \[decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) * (1 - tmp\_epoch / tmp\_decay\_epoch)^{power} + end\_learning\_rate\]- Where: \[tmp\_epoch = \min(current\_epoch, decay\_epoch)\]\[current\_epoch=floor(\frac{i}{step\_per\_epoch})\]\[tmp\_decay\_epoch = decay\_epoch\]- If update_decay_epoch is true, update the value of \(tmp\_decay\_epoch\) every epoch. The formula is: \[tmp\_decay\_epoch = decay\_epoch * ceil(current\_epoch / decay\_epoch)\]- Parameters
- learning_rate (float) – The initial value of learning rate. 
- end_learning_rate (float) – The end value of learning rate. 
- total_step (int) – The total number of steps. 
- step_per_epoch (int) – The number of steps in per epoch. 
- decay_epoch (int) – Number of epochs to decay over. 
- power (float) – The power of polynomial. It must be greater than 0. 
- update_decay_epoch (bool) – If - true, update decay_epoch. Default:- False.
 
- Returns
- list[float]. The size of list is total_step. 
- Raises
- TypeError – If learning_rate or end_learning_rate or power is not a float. 
- TypeError – If total_step or step_per_epoch or decay_epoch is not an int. 
- TypeError – If update_decay_epoch is not a bool. 
- ValueError – If learning_rate or power is not greater than 0. 
 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import mindspore.nn as nn >>> >>> lr = 0.1 >>> end_learning_rate = 0.01 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 2 >>> power = 0.5 >>> lr = nn.polynomial_decay_lr(lr, end_learning_rate, total_step, step_per_epoch, decay_epoch, power) >>> net = nn.Dense(2, 3) >>> optim = nn.SGD(net.trainable_params(), learning_rate=lr)