mindspore.nn.ReplicationPad2d
- class mindspore.nn.ReplicationPad2d(padding)[source]
- Pad on HW dimension of input x according to padding. - Parameters
- The padding size to pad the last two dimension of x . - If padding is an integer, all directions will be padded with the same size. 
- If padding is a tuple, uses \((pad_{left}, pad_{right}, pad_{up}, pad_{down})\) to pad. 
 
 - Inputs:
- x (Tensor) - 3D or 4D, shape: \((C, H_{in}, W_{in})\) or \((N, C, H_{in}, W_{in})\). 
 
- Outputs:
- Tensor, after padding. Shape: \((C, H_{out}, W_{out})\) or \((N, C, H_{out}, W_{out})\), where \(H_{out} = H_{in} + pad_{up} + pad_{down}\), \(W_{out} = W_{in} + pad_{left} + pad_{right}\). 
 - Raises
- TypeError – If padding is neither a tuple nor an int. 
- TypeError – If there is an element in padding that is not int. 
- ValueError – If padding is tuple and the length of padding is not divisible by 2. 
- ValueError – If padding is tuple and there is a dimension mismatch between the padding and the tensor. 
 
 - Supported Platforms:
- GPU
 - Examples - >>> import numpy as np >>> import mindspore as ms >>> pad2d = ms.nn.ReplicationPad2d(2) >>> input = ms.Tensor(np.arange(0, 9).reshape(1, 1, 3, 3), ms.float32) >>> print(input) [[[[0. 1. 2.] [3. 4. 5.] [6. 7. 8.]]]] >>> out = pad2d(input) >>> print(out) [[[[0. 0. 0. 1. 2. 2. 2.] [0. 0. 0. 1. 2. 2. 2.] [0. 0. 0. 1. 2. 2. 2.] [3. 3. 3. 4. 5. 5. 5.] [6. 6. 6. 7. 8. 8. 8.] [6. 6. 6. 7. 8. 8. 8.] [6. 6. 6. 7. 8. 8. 8.]]]] >>> pad2d = ms.nn.ReplicationPad2d((1, 1, 2, 0)) >>> out = pad2d(input) >>> print(out) [[[[0. 0. 1. 2. 2.] [0. 0. 1. 2. 2.] [0. 0. 1. 2. 2.] [3. 3. 4. 5. 5.] [6. 6. 7. 8. 8.]]]]