mindspore.nn.InverseDecayLR
- class mindspore.nn.InverseDecayLR(learning_rate, decay_rate, decay_steps, is_stair=False)[source]
- Calculates learning rate base on inverse-time decay function. - For current step, the formula of computing decayed learning rate is: \[decayed\_learning\_rate = learning\_rate / (1 + decay\_rate * p)\]- Where : \[p = \frac{current\_step}{decay\_steps}\]- If is_stair is True, the formula is : \[p = floor(\frac{current\_step}{decay\_steps})\]- Parameters
- learning_rate (float) – The initial value of learning rate. 
- decay_rate (float) – The decay rate. 
- decay_steps (int) – Number of steps to decay over. 
- is_stair (bool, optional) – If true, learning rate decay once every decay_steps times. If False, the learning rate decays for every step. Default: - False.
 
 - Inputs:
- global_step (Tensor) - The current step number. 
 
- Outputs:
- Tensor. The learning rate value for the current step with shape \(()\). 
 - Raises
- TypeError – If learning_rate or decay_rate is not a float. 
- TypeError – If decay_steps is not an int or is_stair is not a bool. 
- ValueError – If decay_steps is less than 1. 
- ValueError – If learning_rate or decay_rate is less than or equal to 0. 
 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import mindspore >>> from mindspore import Tensor, nn >>> >>> learning_rate = 0.1 >>> decay_rate = 0.9 >>> decay_steps = 4 >>> global_step = Tensor(2, mindspore.int32) >>> inverse_decay_lr = nn.InverseDecayLR(learning_rate, decay_rate, decay_steps, True) >>> lr = inverse_decay_lr(global_step) >>> net = nn.Dense(2, 3) >>> optim = nn.SGD(net.trainable_params(), learning_rate=lr)