mindspore.nn.HShrink
- class mindspore.nn.HShrink(lambd=0.5)[source]
- Applies Hard Shrink activation function element-wise. - The formula is defined as follows: \[\begin{split}\text{HShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases}\end{split}\]- HShrink Activation Function Graph:   - Parameters
- lambd (number, optional) – The threshold \(\lambda\) defined by the Hard Shrink formula. Default: - 0.5.
 - Inputs:
- input (Tensor) - The input of Hard Shrink. Supported dtypes: - Ascend: float16, float32, bfloat16. 
- CPU/GPU: float16, float32. 
 
 
- Outputs:
- Tensor, the same shape and data type as the input. 
 - Raises
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import mindspore >>> from mindspore import Tensor, nn >>> import numpy as np >>> input = Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), mindspore.float32) >>> hshrink = nn.HShrink() >>> output = hshrink(input) >>> print(output) [[ 0. 1. 2. ] [ 0. 0. -2.1233]]