mindspore.nn.ConstantPad1d
- class mindspore.nn.ConstantPad1d(padding, value)[source]
- Using a given constant value to pads the last dimensions of input tensor. - Parameters
- padding (Union[int, tuple]) – The padding size to pad the last dimension of input tensor. If is int, uses the same padding in both boundaries of input's last dimension. If a 2-tuple, uses (padding_0, padding_1) to pad. If the input is x, the size of last dimension of output is \(padding\_0 + x.shape[-1] + padding\_1\). The remaining dimensions of the output are consistent with those of the input. Only support non-negative value while running in Ascend. 
 
 - Inputs:
- x (Tensor) - shape is \((N, *)\), where \(*\) means, any number of additional dimensions. It is not supported that the size of dimensions is greater than 5 while running on Ascend. 
 
 - Returns
- Tensor, the tensor after padding. 
- Raises
- TypeError – If padding is not a tuple or int. 
- TypeError – If value is not int or float. 
- ValueError – If the length of padding with tuple type is not equal to 2. 
- ValueError – If the output shape after padding is not positive. 
- ValueError – If the rank of 'x' is more than 5 while running in Ascend. 
- ValueError – If padding contains negative value while running in Ascend. 
 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import numpy as np >>> import mindspore as ms >>> x = np.ones(shape=(1, 2, 3, 4)).astype(np.float32) >>> x = ms.Tensor(x) >>> # padding is tuple >>> padding = (0, 1) >>> value = 0.5 >>> pad1d = ms.nn.ConstantPad1d(padding, value) >>> out = pad1d(x) >>> print(out) [[[[1. 1. 1. 1. 0.5] [1. 1. 1. 1. 0.5] [1. 1. 1. 1. 0.5]] [[1. 1. 1. 1. 0.5] [1. 1. 1. 1. 0.5] [1. 1. 1. 1. 0.5]]]] >>> print(out.shape) (1, 2, 3, 5) >>> # padding is int >>> padding = 1 >>> value = 0.5 >>> pad1d = ms.nn.ConstantPad1d(padding, value) >>> out = pad1d(x) >>> print(out) [[[[0.5 1. 1. 1. 1. 0.5] [0.5 1. 1. 1. 1. 0.5] [0.5 1. 1. 1. 1. 0.5]] [[0.5 1. 1. 1. 1. 0.5] [0.5 1. 1. 1. 1. 0.5] [0.5 1. 1. 1. 1. 0.5]]]] >>> print(out.shape) (1, 2, 3, 6)