mindspore.Tensor.masked_scatter_
- Tensor.masked_scatter_(mask, source) Tensor[source]
- Updates the value in the self with the source value according to the mask, and returns a Tensor. The shape of mask and the self must be the same or mask is broadcastable. - Note - When the total number of elements in source is less than the number of True elements in mask, the NPU may not be able to detect this invalid input; therefore, the correctness of the output cannot be guaranteed. - Parameters
- Returns
- Tensor, with the same type and shape as the self. 
- Raises
- TypeError – If mask or source is not a Tensor. 
- TypeError – If data type of the "self Tensor" is not be supported. 
- TypeError – If dtype of mask is not bool. 
- TypeError – If the dim of the "self Tensor" is less than the dim of mask. 
- ValueError – If mask can not be broadcastable to the "self Tensor". 
 
 - Supported Platforms:
- Ascend
 - Examples - >>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> x = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32) >>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_) >>> tensor = Tensor(np.array([5., 6., 7.]), mindspore.float32) >>> output = x.masked_scatter_(mask, tensor) >>> print(output) [5. 6. 3. 7.] >>> print(x) [5. 6. 3. 7.]