mindspore.dataset.vision.RandomColorAdjust
- class mindspore.dataset.vision.RandomColorAdjust(brightness=(1, 1), contrast=(1, 1), saturation=(1, 1), hue=(0, 0))[source]
- Randomly adjust the brightness, contrast, saturation, and hue of the input image. - Note - This operation is executed on the CPU by default, but it is also supported to be executed on the GPU or Ascend via heterogeneous acceleration. - Parameters
- brightness (Union[float, Sequence[float]], optional) – Brightness adjustment factor. Default: - (1, 1). Cannot be negative. If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness]. If it is a sequence, it should be [min, max] for the range.
- contrast (Union[float, Sequence[float]], optional) – Contrast adjustment factor. Default: - (1, 1). Cannot be negative. If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast]. If it is a sequence, it should be [min, max] for the range.
- saturation (Union[float, Sequence[float]], optional) – Saturation adjustment factor. Default: - (1, 1). Cannot be negative. If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation]. If it is a sequence, it should be [min, max] for the range.
- hue (Union[float, Sequence[float]], optional) – Hue adjustment factor. Default: - (0, 0). If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5. If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
 
- Raises
- TypeError – If brightness is not of type float or Sequence[float]. 
- TypeError – If contrast is not of type float or Sequence[float]. 
- TypeError – If saturation is not of type float or Sequence[float]. 
- TypeError – If hue is not of type float or Sequence[float]. 
- ValueError – If brightness is negative. 
- ValueError – If contrast is negative. 
- ValueError – If saturation is negative. 
- ValueError – If hue is not in range [-0.5, 0.5]. 
- RuntimeError – If given tensor shape is not <H, W, C>. 
 
 - Supported Platforms:
- CPU- GPU- Ascend
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transform_op = vision.RandomColorAdjust(brightness=(0.5, 1), ... contrast=(0.4, 1), ... saturation=(0.3, 1)) >>> transforms_list = [transform_op] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.RandomColorAdjust(brightness=(0.5, 1), contrast=(0.4, 1), saturation=(0.3, 1))(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples: