mindspore.ops.sparse_segment_mean
- mindspore.ops.sparse_segment_mean(x, indices, segment_ids)[source]
Computes the mean of sparse segments in the input tensor.
\[output_i = \frac{\sum_j x_{indices[j]}}{N}\]where N is the number of elements where \(segment\_ids[j] == i\) . If segment_ids doesn't contain i, then \(output[i] = 0\) .
Note
On CPU, values in segment_ids must be sorted and indices must be within range[0, x.shape[0]).
On GPU, unsorted segment_ids may result in undefined but safe behavior.Out-of-range indices will be ignored.
- Parameters
- Returns
Tensor
- Supported Platforms:
GPU
CPU
Examples
>>> import mindspore >>> x = mindspore.tensor([[0, 1, 2], [1, 2, 3], [3, 6, 7]], dtype=mindspore.float32) >>> indices = mindspore.tensor([0, 1, 2], dtype=mindspore.int32) >>> segment_ids = mindspore.tensor([1,2,2], dtype=mindspore.int32) >>> out = mindspore.ops.sparse_segment_mean(x, indices, segment_ids) >>> print(out) [[0. 0. 0.] [0. 1. 2.] [2. 4. 5.]]