mindspore.ops.kron
- mindspore.ops.kron(input, other)[source]
Compute the Kronecker product of two tensors.
If the shape of input is \((a_{0}\) input \(a_{1}\) input … input \(a_{n})\) and the shape of other is \((b_{0}\) input \(b_{1}\) input … input \(b_{n})\) , the result will be \((a_{0}*b_{0}\) input \(a_{1}*b_{1}\) input … input \(a_{n}*b_{n})\) .
\[(input ⊗ other)_{k_{0},k_{1},...k_{n}} = input_{i_{0},i_{1},...i_{n}} * other_{j_{0},j_{1},...j_{n}},\]where \(k_{t} = i_{t} * b_{t} + j_{t}\) for 0 ≤ t ≤ n.
Note
Supports real-valued and complex-valued inputs.
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> input = mindspore.tensor([[0., 1., 2.], [3., 4., 5.]]) >>> other = mindspore.tensor([[-1., -2., -3.], [-4., -6., -8.]]) >>> output = mindspore.ops.kron(input, other) >>> print(output) [[ 0. 0. 0. -1. -2. -3. -2. -4. -6.] [ 0. 0. 0. -4. -6. -8. -8. -12. -16.] [ -3. -6. -9. -4. -8. -12. -5. -10. -15.] [-12. -18. -24. -16. -24. -32. -20. -30. -40.]]