mindspore.ops.scatter_nd_div
- mindspore.ops.scatter_nd_div(input_x, indices, updates, use_locking=False)[source]
Perform a sparse division update on input_x based on the specified indices and update values.
\[\text{input_x}[\text{indices}[i, ..., j]] \mathrel{/}= \text{updates}[i, ..., j]\]Note
Support implicit type conversion and type promotion.
The dimension of indices is at least 2, and its shape must be indices.shape[-1] <= len(indices.shape).
The shape of updates is indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
- Parameters
- Returns
Tensor
- Supported Platforms:
GPU
CPU
Examples
>>> import mindspore >>> input_x = mindspore.Parameter(mindspore.tensor([1, 2, 3, 4, 5, 6, 7, 8], ... mindspore.float32), name="x") >>> indices = mindspore.tensor([[2], [4], [1], [7]], mindspore.int32) >>> updates = mindspore.tensor([6, 7, 8, 9], mindspore.float32) >>> output = mindspore.ops.scatter_nd_div(input_x, indices, updates, False) >>> print(output) [1. 0.25 0.5 4. 0.71428573 6. 7. 0.8888889 ] >>> input_x = mindspore.Parameter(mindspore.tensor(mindspore.ops.ones((4, 4, 4)), mindspore.float32)) >>> indices = mindspore.tensor([[0], [2]], mindspore.int32) >>> updates = mindspore.tensor([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]], mindspore.float32) >>> output = mindspore.ops.scatter_nd_div(input_x, indices, updates, False) >>> print(output) [[[1. 1. 1. 1. ] [0.5 0.5 0.5 0.5 ] [0.33333334 0.33333334 0.33333334 0.33333334] [0.25 0.25 0.25 0.25 ]] [[1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ]] [[0.2 0.2 0.2 0.2 ] [0.16666667 0.16666667 0.16666667 0.16666667] [0.14285715 0.14285715 0.14285715 0.14285715] [0.125 0.125 0.125 0.125 ]] [[1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ] [1. 1. 1. 1. ]]]