mindspore.Tensor.median
- Tensor.median(axis=- 1, keepdims=False) Tuple of Tensors
Computes the median and indices of input tensor.
Warning
indices does not necessarily contain the first occurrence of each median value found in the input, unless it is unique. The specific implementation of this API is device-specific. The results may be different on CPU and GPU.
- Parameters
- Returns
y (Tensor) - Returns the median value along the specified dimension. And It has the same dtype as the input.
indices (Tensor) - The index of the median. And the dtype is int64.
- Raises
TypeError – If axis is not an int.
TypeError – If keepdims is not a bool.
ValueError – If axis is not in range of [-x.dim, x.dim-1].
- Supported Platforms:
GPUCPU
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[0.57, 0.11, 0.21],[0.38, 0.50, 0.57], [0.36, 0.16, 0.44]]).astype(np.float32)) >>> y = x.median(axis=0, keepdims=False) >>> print(y) (Tensor(shape=[3], dtype=Float32, value= [ 3.79999995e-01, 1.59999996e-01, 4.39999998e-01]), Tensor(shape=[3], dtype=Int64, value= [1, 2, 2]))
- Tensor.median() Tensor
Return the median of the input.
- Returns
y (Tensor) - Output median.
- Supported Platforms:
Ascend
- Tensor.median(dim=- 1, keepdim=False) Tuple of Tensors
Output the median on the specified dimension
dimand its corresponding index. Ifdimis None, calculate the median of all elements in the Tensor.- Parameters
- Returns
y (Tensor) - Output median, with the same data type as
input.If
dimisNone,yonly has one element.If
keepdimisTrue, theyhas the same shape as theinputexcept the shape ofyin dimension dim is size 1.Otherwise, the
ylacks dim dimension than input.
indices (Tensor) - The index of the median. Shape is consistent with
y, with a data type of int64.
- Raises
TypeError – If
dimis not an int.TypeError – If
keepdimis not a bool.ValueError – If
dimis not in range of [-x.dim, x.dim-1].
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[0.57, 0.11, 0.21],[0.38, 0.50, 0.57], [0.36, 0.16, 0.44]]).astype(np.float32)) >>> y = x.median(dim=0, keepdim=False) >>> print(y) (Tensor(shape=[3], dtype=Float32, value= [ 3.79999995e-01, 1.59999996e-01, 4.39999998e-01]), Tensor(shape=[3], dtype=Int64, value= [1, 2, 2]))