mindspore.Tensor.log_normal
- Tensor.log_normal(mean=1.0, std=2.0)[source]
- Fills the elements of the input tensor with log normal values initialized by given mean and std: \[\text{f}(x;1.0,2.0)=\frac{1}{x\delta \sqrt[]{2\pi} }e^{-\frac{(\ln x-\mu )^2}{2\delta ^2} }\]- where \(\mu\), \(\delta\) is mean and standard deviation of lognormal distribution respectively. - Warning - This is an experimental API that is subject to change or deletion. - Parameters
- Returns
- Tensor. A Tensor with the same type and shape of input. 
 - Supported Platforms:
- Ascend- GPU- CPU
 - Examples - >>> import mindspore >>> import numpy as np >>> x = mindspore.Tensor(np.array([[1, 2], [3, 4]]), dtype=mindspore.float32) >>> output = x.log_normal() >>> print(output) [[1.2788825 2.3305743] [14.944194 0.16303174]]