mindspore.Tensor.argmax
- Tensor.argmax(axis=None, keepdims=False) Tensor
Return the indices of the maximum values of self across a dimension.
- Parameters
axis (Union[int, None], optional) – The dimension to reduce. If axis is
None, the indices of the maximum value within the flattened input will be returned. The value of axis cannot exceed the dimension of self. Default:None.keepdims (bool, optional) – Whether the output tensor retains the specified dimension. Ignored if axis is None. Default:
False.
- Returns
Tensor, indices of the maximum values of self across a dimension.
- Raises
TypeError – If keepdims is not bool.
ValueError – If axis is out of range.
- Supported Platforms:
AscendGPUCPU
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32)) >>> output = Tensor.argmax(x, axis=-1) # x.argmax(axis=-1) >>> print(output) [1 0 0]
- Tensor.argmax(dim=None, keepdim=False) Tensor
Return the indices of the maximum values of self across a dimension.
- Parameters
dim (Union[int, None], optional) – The dimension to reduce. If dim is
None, the indices of the maximum value within the flattened input will be returned. The value of dim cannot exceed the dimension of self. Default:None.keepdim (bool, optional) – Whether the output tensor retains the specified dimension. Ignored if dim is None. Default:
False.
- Returns
Tensor, indices of the maximum values of self across a dimension.
- Raises
TypeError – If keepdim is not bool.
ValueError – If dim is out of range.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32)) >>> output = Tensor.argmax(x, dim=-1) # x.argmax(dim=-1) >>> print(output) [1 0 0]