# Differences between torch.nn.Transformer and mindspore.nn.Transformer [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Transformer.md) ## torch.nn.Transformer ```python class torch.nn.Transformer( d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation='relu', custom_encoder=None, custom_decoder=None )(src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None) ``` For more information, see [torch.nn.Transformer](https://pytorch.org/docs/1.8.1/generated/torch.nn.Transformer.html). ## mindspore.nn.Transformer ```python class mindspore.nn.Transformer( d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation='relu', custom_encoder=None, custom_decoder=None, layer_norm_eps=1e-05, batch_first=False, norm_first=False, dtype=mstype.float32 )(src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None) ``` For more information, see [mindspore.nn.Transformer](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.Transformer.html). ## Differences The code implementation and parameter update logic of `mindspore.nn.Transformer` optimizer is mostly the same with `torch.nn.Transformer`. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | | Parameters | Parameter 1 | d_model | d_model | Consistent function | | | Parameter 2 | nhead | nhead | Consistent function | | | Parameter 3 | num_encoder_layers | num_encoder_layers | Consistent function | | | Parameter 4 | num_decoder_layers | num_decoder_layers | Consistent function | | | Parameter 5 | dim_feedforward | dim_feedforward | Consistent function | | | Parameter 6 | dropout | dropout | Consistent function | | | Parameter 7 | activation | activation | Consistent function | | | Parameter 8 | custom_encoder | custom_encoder | Consistent function | | | Parameter 9 | custom_decoder | custom_decoder | Consistent function | | | Parameter 10 | | layer_norm_eps | In MindSpore, the value of eps can be set in LayerNorm, PyTorch does not have this function | | | Parameter 11 | | batch_first | In MindSpore, first batch can be set as batch dimension, PyTorch does not have this function | | | Parameter 12 | | norm_first | In MindSpore, LayerNorm can be set in between MultiheadAttention Layer and FeedForward Layer or after, PyTorch does not have this function | | | Parameter 13 | | dtype | In MindSpore, dtype can be set for parameters using 'dtype'. PyTorch does not have this function. | | Input | Input 1 | src | src | Consistent function | | | Input 2 | tgt | tgt | Consistent function | | | Input 3 | src_mask | src_mask | In MindSpore, dtype can be set as float or Bool Tensor; in PyTorch dtype can be set as float, byte or Bool Tensor. | | | Input 4 | tgt_mask | tgt_mask | In MindSpore, dtype can be set as float or Bool Tensor; in PyTorch dtype can be set as float, byte or Bool Tensor. | | | Input 5 | memory_mask | memory_mask | In MindSpore, dtype can be set as float or Bool Tensor; in PyTorch dtype can be set as float, byte or Bool Tensor. | | | Input 6 | src_key_padding_mask | src_key_padding_mask | In MindSpore, dtype can be set as float or Bool Tensor; in PyTorch dtype can be set as byte or Bool Tensor. | | | Input 7 | tgt_key_padding_mask | tgt_key_padding_mask | In MindSpore, dtype can be set as float or Bool Tensor; in PyTorch dtype can be set as byte or Bool Tensor. | | | Input 8 | memory_key_padding_mask | memory_key_padding_mask | In MindSpore, dtype can be set as float or Bool Tensor; in PyTorch dtype can be set as byte or Bool Tensor. | ## Code Example ```python # PyTorch import torch from torch import nn transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12) src = torch.rand(10, 32, 512) tgt = torch.rand(10, 32, 512) out = transformer_model(src, tgt) print(out.shape) #torch.Size([10, 32, 512]) # MindSpore import mindspore as ms import numpy as np transformer_model = ms.nn.Transformer(nhead=16, num_encoder_layers=12) src = ms.Tensor(np.random.rand(10, 32, 512), ms.float32) tgt = ms.Tensor(np.random.rand(10, 32, 512), ms.float32) out = transformer_model(src, tgt) print(out.shape) #(10, 32, 512) ```