# Function Differences with tf.keras.initializers.RandomNormal [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.1/docs/mindspore/source_en/note/api_mapping/tensorflow_diff/initNormal.md) ## tf.keras.initializers.RandomNormal ```python tf.keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=None, dtype=tf.dtypes.float32 ) ``` For more information, see [tf.keras.initializers.RandomNormal](https://tensorflow.google.cn/versions/r1.15/api_docs/python/tf/keras/initializers/RandomNormal). ## mindspore.common.initializer.Normal ```python mindspore.common.initializer.Normal(sigma=0.01, mean=0.0) ``` For more information, see [mindspore.common.initializer.Normal](https://mindspore.cn/docs/en/r2.1/api_python/mindspore.common.initializer.html#mindspore.common.initializer.Normal). ## Usage TensorFlow: generate a normal distribution with a mean of 0.0 and a standard deviation of 0.05 by default. Default values: mean=0.0, stddev=0.05. MindSpore: generate a normal distribution with a mean of 0.0 and a standard deviation of 0.01 by default. Default values: mean=0.0, sigma=0.01. ## Code Example > The following results are random. ```python import tensorflow as tf init = tf.keras.initializers.RandomNormal() x = init(shape=(2, 2)) with tf.Session() as sess: print(x.eval()) # out: # [[-1.4192176 1.9695756] # [ 1.6240929 0.9677597]] ``` ```python import mindspore as ms from mindspore.common.initializer import Normal, initializer x = initializer(Normal(), shape=[2, 2], dtype=ms.float32) print(x) # out: # [[ 0.01005767 -0.00049193] # [-0.00026987 0.02598832]] ```