# Function Differences with tf.keras.backend.dot [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.1/docs/mindspore/source_en/note/api_mapping/tensorflow_diff/dot.md) ## tf.keras.backend.dot ```text tf.keras.backend.dot(x, y) -> Tensor ``` For more information, see [tf.keras.backend.dot](https://keras.io/zh/backend/#dot). ## mindspore.ops.dot ```text mindspore.ops.dot(x1, x2) -> Tensor ``` For more information, see [mindspore.ops.dot](https://www.mindspore.cn/docs/en/r2.1/api_python/ops/mindspore.ops.dot.html). ## Differences TensorFlow: Compute the dot product between two Tensor or Variable. MindSpore: When both input parameters are tensor, MindSpore API implements the same function as TensorFlow, and only the parameter names are different. Supported only by TensorFlow when either of the two input parameters is a variable. | Categories | Subcategories |TensorFlow | MindSpore | Differences | | :-: | :-: | :-: | :-: |:-:| |Parameters | Parameter 1 | x | x1 |Same function, different parameter names, and MindSpore parameters can only be Tensor type | | | Parameter 2 | y | x2 |Same function, different parameter names, and MindSpore parameters can only be Tensor type | ### Code Example > When both input parameters are of Tensor type, the function is the same and the usage is the same. ```python import tensorflow as tf x = tf.ones([2, 3]) y = tf.ones([1, 3, 2]) xy = tf.keras.backend.dot(x, y) print(xy.numpy()) # [[[3. 3.]] # [[3. 3.]]] # MindSpore import mindspore from mindspore import Tensor import numpy as np x1 = Tensor(np.ones(shape=[2, 3]), mindspore.float32) x2 = Tensor(np.ones(shape=[1, 3, 2]), mindspore.float32) out = mindspore.ops.dot(x1, x2) print(out) # [[[3. 3.]] # [[3. 3.]]] ```