# Function Differences with tf.nn.avg_pool2d [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.1/docs/mindspore/source_en/note/api_mapping/tensorflow_diff/AvgPool2d.md) ## tf.nn.avg_pool2d ```text tf.nn.avg_pool2d( input, ksize, strides, padding, data_format='NHWC', name=None ) -> Tensor ``` For more information, see [tf.nn.avg_pool2d](https://tensorflow.google.cn/versions/r2.6/api_docs/python/tf/nn/avg_pool2d). ## mindspore.nn.AvgPool2d ```text mindspore.nn.AvgPool2d( kernel_size=1, stride=1, pad_mode='valid', data_format='NCHW' )(x) -> Tensor ``` For more information, see [mindspore.nn.AvgPool2d](https://www.mindspore.cn/docs/en/r2.1/api_python/nn/mindspore.nn.AvgPool2d.html). ## Differences TensorFlow: Performs average pooling on the input Tensor. MindSpore: MindSpore API implements the same function as TensorFlow, and only the parameter names and the way of using input Tensor are different. | Categories | Subcategories |TensorFlow | MindSpore | Differences | | --- | --- | --- | --- |---| | Parameters | Parameter 1 | input | x | Same function, used to input a 4-dimensional Tensor. The data input format is different | | | Parameter 2 | ksize | kernel_size | Same function, different parameter names, no default values for TensorFlow | | | Parameter 3 | strides | stride | Same function, different parameter names, no default values for TensorFlow | | | Parameter 4 | padding | pad_mode | Same function, different parameter names, no default values for TensorFlow | | | Parameter 5 | data_format | data_format | Same function, different default values of parameters | | | Parameter 6 | name | - | Not involved | ### Code Example > The two APIs achieve the same function and have the same usage. ```python # TensorFlow import tensorflow as tf import numpy as np y = tf.constant([[[[1, 0, 1], [0, 1, 1]]]], dtype=tf.float32) out = tf.nn.avg_pool2d(input=y, ksize=1, strides=1, padding='SAME') print(out.numpy()) # [[[[1. 0. 1.] # [0. 1. 1.]]]] # MindSpore import mindspore import mindspore.nn as nn from mindspore import Tensor pool = nn.AvgPool2d(kernel_size=1, stride=1, pad_mode='SAME') x = Tensor([[[[1, 0, 1], [0, 1, 1]]]], dtype=mindspore.float32) output = pool(x) print(output) # [[[[1. 0. 1.] # [0. 1. 1.]]]] ```