Function Differences with tf.math.reduce_sum
tf.math.reduce_sum
tf.math.reduce_sum(
input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None,
keep_dims=None
)
For more information, see tf.math.reduce_sum.
mindspore.Tensor.sum
mindspore.Tensor.sum(self, axis=None, dtype=None, keepdims=False, initial=None)
For more information, see mindspore.Tensor.sum.
Usage
Both interfaces have the same basic function of computing the sum of Tensor in some dimension. The difference is that mindspore.Tensor.sum has one more parameter initial to set the starting value.
Code Example
import mindspore as ms
a = ms.Tensor([10, -5], ms.float32)
print(a.sum()) # 5.0
print(a.sum(initial=2)) # 7.0
import tensorflow as tf
tf.enable_eager_execution()
b = tf.constant([10, -5])
print(tf.math.reduce_sum(b).numpy()) # 5
