Function Differences with torch.std_mean
torch.std_mean
torch.std_mean(input, dim, unbiased=True, keepdim=False, *, out=None)
For more information, see torch.std_mean.
mindspore.ops.std_mean
mindspore.ops.std_mean(input, axis=None, ddof=0, keepdims=False)
For more information, see mindspore.ops.std_mean.
Differences
PyTorch: Output the standard deviation and mean value of the Tensor in each dimension, or the standard deviation and mean value of the specified dimension according to dim. If unbiased is True, use Bessel for correction; if False, use bias estimation to calculate the standard deviation. keepdim controls whether the output and input dimensions are the same.
MindSpore: Output the standard deviation and mean value of the Tensor in each dimension, or the standard deviation and mean value of the specified dimension according to axis. If ddof is a boolean, it has the same effect as unbiased; if ddof is an integer, the divisor used in the calculation is N-ddof, where N denotes the number of elements. keepdim controls whether the output and the input have the same dimensionality.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
|---|---|---|---|---|
Parameters |
Parameter 1 |
input |
input |
Same function, different parameter names |
Parameter 2 |
dim |
axis |
Same function, different parameter names |
|
Parameter 3 |
unbiased |
ddof |
|
|
Parameter 4 |
keepdim |
keepdims |
Same function, different parameter names |
|
Parameter 5 |
out |
- |
MindSpore does not have this parameter |
Code Example
# PyTorch
import torch
input = torch.tensor([[[9, 7, 4, -10],
[-9, -2, 1, -2]]], dtype=torch.float32)
print(torch.std_mean(input, dim=2, unbiased=True, keepdim=True))
# (tensor([[[8.5829],
# [4.2426]]]), tensor([[[ 2.5000],
# [-3.0000]]]))
# MindSpore
import mindspore as ms
input = ms.Tensor([[[9, 7, 4, -10],
[-9, -2, 1, -2]]], ms.float32)
print(ms.ops.std_mean(input, axis=2, ddof=True, keepdims=True))
# (Tensor(shape=[1, 2, 1], dtype=Float32, value=
# [[[ 8.58292866e+00],
# [ 4.24264050e+00]]]), Tensor(shape=[1, 2, 1], dtype=Float32, value=
# [[[ 2.50000000e+00],
# [-3.00000000e+00]]]))
