Differences with torch.poisson
torch.poisson
torch.poisson(input, generator=None)
For more information, see torch.poisson.
mindspore.ops.random_poisson
mindspore.ops.random_poisson(shape, rate, seed=None, dtype=mstype.float32)
For more information, see mindspore.ops.random_poisson.
Differences
API function of MindSpore is consistent with that of PyTorch.
PyTorch: The shape and data type of the return value are the same as input.
MindSpore: shape determines the shape of the random number tensor sampled under each distribution, and the shape of the return value is mindspore.concat([shape, mindspore.shape(rate)], axis=0) . When the value of shape is Tensor([]), the shape of the return value is the same as that in PyTorch, which is the same as the shape of rate. The data type of the return value is determined by dtype .
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
|---|---|---|---|---|
Parameters |
Parameter 1 |
- |
shape |
The shape of the random number tensor sampled under each distribution under MindSpore, the shape of the return value is the same as PyTorch when the value |
Parameter 2 |
input |
rate |
Parameters of the Poisson distribution |
|
Parameter 3 |
generator |
seed |
For details, see General Difference Parameter Table |
|
Parameter 4 |
- |
dtype |
The data type of the returned value in MindSpore supports int32/64, float16/32/64 |
Code Example
# PyTorch
import torch
import numpy as np
rate = torch.tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), dtype=torch.float32)
output = torch.poisson(rate)
print(output.shape)
# torch.Size([2, 2])
# MindSpore
import mindspore as ms
import numpy as np
shape = ms.Tensor(np.array([]), ms.int32)
rate = ms.Tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), dtype=ms.float32)
output = ms.ops.random_poisson(shape, rate, dtype=ms.float32)
print(output.shape)
# (2, 2)
