# Function Differences with tf.image.resize ## tf.image.resize ```python tf.image.resize( images, size, method=ResizeMethodV1.BILINEAR, preserve_aspect_ratio=False, antialias=False, name=None ) ``` For more information, see [tf.image.resize](https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/image/resize). ## mindspore.dataset.vision.Resize ```python class mindspore.dataset.vision.Resize( size, interpolation=Inter.LINEAR ) ``` For more information, see [mindspore.dataset.vision.Resize](https://mindspore.cn/docs/en/r2.0.0-alpha/api_python/dataset_vision/mindspore.dataset.vision.Resize.html#mindspore.dataset.vision.Resize). ## Differences TensorFlow: Resize the image to the specified size. It supports aligning the centers of the 4 corner pixels and preserving the aspect ratio. MindSpore: Resize the image to the specified size. It will keep the aspect ratio when the input `size` is a single integer. ## Code Example ```python # The following implements Resize with MindSpore. import numpy as np import mindspore.dataset as ds from mindspore.dataset.vision import Inter image = np.random.random((28, 28, 3)) result = ds.vision.Resize((14, 14), Inter.BICUBIC)(image) print(result.shape) # (14, 14, 3) # The following implements resize with TensorFlow. import tensorflow as tf from tensorflow.image import ResizeMethod image = tf.random.normal((28, 28, 3)) result = tf.image.resize(image, (14, 14), ResizeMethod.BICUBIC) print(result.shape) # (14, 14, 3) ```