# Function Differences with tf.image.random_crop ## tf.image.random_crop ```python tf.image.random_crop( value, size, seed=None, name=None ) ``` For more information, see [tf.image.random_crop](https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/image/random_crop). ## mindspore.dataset.vision.RandomCrop ```python class mindspore.dataset.vision.RandomCrop( size, padding=None, pad_if_needed=False, fill_value=0, padding_mode=Border.CONSTANT ) ``` For more information, see [mindspore.dataset.vision.RandomCrop](https://mindspore.cn/docs/en/r2.0.0-alpha/api_python/dataset_vision/mindspore.dataset.vision.RandomCrop.html#mindspore.dataset.vision.RandomCrop). ## Differences TensorFlow: Crop the image at a random position with the specified random seed. MindSpore: Crop the image at a random position and pad if needed. The global random seed can be set through `mindspore.dataset.config.set_seed`. ## Code Example ```python # The following implements RandomCrop with MindSpore. import numpy as np import mindspore.dataset as ds ds.config.set_seed(57) image = np.random.random((28, 28, 3)) result = ds.vision.RandomCrop((5, 5))(image) print(result.shape) # (5, 5, 3) # The following implements random_crop with TensorFlow. import tensorflow as tf image = tf.random.normal((28, 28, 3)) result = tf.image.random_crop(image, (5, 5, 3), seed=57) print(result.shape) # (5, 5, 3) ```