# Function Differences with tf.io.decode_image ## tf.io.decode_image ```python tf.io.decode_image( contents, channels=None, dtype=tf.dtypes.uint8, name=None, expand_animations=True ) ``` For more information, see [tf.io.decode_image](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/io/decode_image). ## mindspore.dataset.vision.Decode ```python class mindspore.dataset.vision.Decode( to_pil=False ) ``` For more information, see [mindspore.dataset.vision.Decode](https://mindspore.cn/docs/en/r2.0.0-alpha/api_python/dataset_vision/mindspore.dataset.vision.Decode.html#mindspore.dataset.vision.Decode). ## Differences TensorFlow: Decode the raw image bytes into an image with the specified number of channels and data type. It supports decoding GIF images. MindSpore: Decode the raw image bytes into a RGB image, `to_pil` decides that whether output in PIL format or NumPy Format. ## Code Example ```python # The following implements Decode with MindSpore. import numpy as np import mindspore.dataset as ds image = np.fromfile("/tmp/file.jpg", dtype=np.uint8) result = ds.vision.Decode()(image) # The following implements decode_image with TensorFlow. import tensorflow as tf raw = tf.io.read_file("/tmp/file.jpg") result = tf.io.decode_image(raw, channels=3) ```