# Function Differences with tf.data.experimental.CsvDataset ## tf.data.experimental.CsvDataset ```python class tf.data.experimental.CsvDataset( filenames, record_defaults, compression_type=None, buffer_size=None, header=False, field_delim=',', use_quote_delim=True, na_value='', select_cols=None, exclude_cols=None ) ``` For more information, see [tf.data.experimental.CsvDataset](https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/data/experimental/CsvDataset). ## mindspore.dataset.CSVDataset ```python class mindspore.dataset.CSVDataset( dataset_files, field_delim=', ', column_defaults=None, column_names=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None ) ``` For more information, see [mindspore.dataset.CSVDataset](https://www.mindspore.cn/docs/en/r2.0.0-alpha/api_python/dataset/mindspore.dataset.CSVDataset.html#mindspore.dataset.CSVDataset). ## Differences TensorFlow: Create Dataset from a list of CSV files. It supports decompression operations and can set cache size and skip file headers. MindSpore: Create Dataset from a list of CSV files. It supports setting the number of samples. ## Code Example ```python # The following implements CSVDataset with MindSpore. import mindspore.dataset as ds dataset_files = ['/tmp/example0.csv', '/tmp/example1.csv'] dataset = ds.TextFileDataset(dataset_files) # The following implements CsvDataset with TensorFlow. import tensorflow as tf filenames = ['/tmp/example0.csv', '/tmp/example1.csv'] dataset = tf.data.experimental.CsvDataset(filenames, [tf.float32, tf.constant([0.0], dtype=tf.float32), tf.int32]) ```