# Function Differences with tf.gradients [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r1.8/resource/_static/logo_source_en.png)](https://gitee.com/mindspore/docs/blob/r1.8/docs/mindspore/source_en/note/api_mapping/tensorflow_diff/GradOperation.md) ## tf.gradients ```python tf.gradients( ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None, stop_gradients=None, unconnected_gradients=tf.UnconnectedGradients.NONE ) ``` For more information, see [tf.gradients](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/gradients). ## mindspore.ops.GradOperation ```python class mindspore.ops.GradOperation( get_all=False, get_by_list=False, sens_param=False ) ``` For more information, see [mindspore.ops.GradOperation](https://mindspore.cn/docs/en/r1.8/api_python/ops/mindspore.ops.GradOperation.html). ## Differences TensorFlow: Compute the gradient of `ys` with respect to `xs`, and return a list of the same length as `xs`. MindSpore: Compute the first derivative. When `get_all` is set to False, the first input derivative is computed. When `get_all` is set to True, all input derivatives are computed. When `get_by_list` is set to False, weight derivatives are not computed. When `get_by_list` is set to True, the weight derivative is computed. `sens_param` scales the output value of the network to change the final gradient. ## Code Example ```python # In MindSpore: import numpy as np import mindspore.nn as nn import mindspore as ms from mindspore import ops class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = ops.MatMul() self.z = ms.Parameter(ms.Tensor(np.array([1.0], np.float32)), name='z') def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return out class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation() def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) x = ms.Tensor([[0.5, 0.6, 0.4], [1.2, 1.3, 1.1]], dtype=ms.float32) y = ms.Tensor([[0.01, 0.3, 1.1], [0.1, 0.2, 1.3], [2.1, 1.2, 3.3]], dtype=ms.float32) output = GradNetWrtX(Net())(x, y) print(output) # Out: # [[1.4100001 1.5999999 6.6 ] # [1.4100001 1.5999999 6.6 ]] # In TensorFlow: import tensorflow as tf w1 = tf.get_variable('w1', shape=[3]) w2 = tf.get_variable('w2', shape=[3]) w3 = tf.get_variable('w3', shape=[3]) w4 = tf.get_variable('w4', shape=[3]) z1 = w1 + w2+ w3 z2 = w3 + w4 grads = tf.gradients([z1, z2], [w1, w2, w3, w4], grad_ys=[tf.convert_to_tensor([2.,2.,3.]), tf.convert_to_tensor([3.,2.,4.])]) with tf.Session() as sess: tf.global_variables_initializer().run() print(sess.run(grads)) # Out: # [array([2., 2., 3.], dtype=float32), # array([2., 2., 3.], dtype=float32), # array([5., 4., 7.], dtype=float32), # array([3., 2., 4.], dtype=float32)] ```