# Function Differences with torch.nn.init.constant_ [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r1.8/resource/_static/logo_source_en.png)](https://gitee.com/mindspore/docs/blob/r1.8/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Constant.md) ## torch.nn.init.constant_ ```python torch.nn.init.constant_( tensor, val ) ``` For more information, see [torch.nn.init.constant_](https://pytorch.org/docs/1.5.0/nn.init.html#torch.nn.init.constant_). ## mindspore.common.initializer.Constant ```python class mindspore.common.initializer.Constant(value)(arr) ``` For more information, see [mindspore.common.initializer.Constant](https://mindspore.cn/docs/en/r1.8/api_python/mindspore.common.initializer.html#mindspore.common.initializer.Constant). ## Differences PyTorch: Fills in the input tensor with constant `val`. MindSpore:Fills in a constant array with `value`(int or numpy array) and update-in-place for the input. ## Code Example ```python import mindspore import torch import numpy as np # In MindSpore, fill a constant array with value(int or numpy array). input_constant = np.array([1, 2, 3]) constant_init = mindspore.common.initializer.Constant(value=1) out_constant = constant_init(input_constant) print(input_constant) # Out: # [1 1 1] # In torch, fill in the input tensor with constant val. input_constant = np.array([1, 2, 3]) out_constant = torch.nn.init.constant_( tensor=torch.tensor(input_constant), val=1 ) print(out_constant) # Out: # tensor([1, 1, 1]) ```