# Function Differences with torch.nn.BatchNorm1d [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r1.8/resource/_static/logo_source_en.png)](https://gitee.com/mindspore/docs/blob/r1.8/docs/mindspore/source_en/note/api_mapping/pytorch_diff/BatchNorm1d.md) ## torch.nn.BatchNorm1d ```python class torch.nn.BatchNorm1d( num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True ) ``` For more information, see [torch.nn.BatchNorm1d](https://pytorch.org/docs/1.5.0/nn.html#torch.nn.BatchNorm1d). ## mindspore.nn.BatchNorm1d ```python class mindspore.nn.BatchNorm1d( num_features, eps=1e-05, momentum=0.9, affine=True, gamma_init="ones", beta_init="zeros", moving_mean_init="zeros", moving_var_init="ones", use_batch_statistics=None) ) ``` For more information, see [mindspore.nn.BatchNorm1d](https://mindspore.cn/docs/en/r1.8/api_python/nn/mindspore.nn.BatchNorm1d.html#mindspore.nn.BatchNorm1d). ## Differences PyTorch:The default value of the momentum parameter used for running_mean and running_var calculation is 0.1. MindSpore:The default value of the momentum parameter is 0.9, and the momentum relationship with Pytorch is 1-momentum, that is, when Pytorch’s momentum value is 0.2, MindSpore’s momemtum should be 0.8. Parameter beta, gamma, moving_mean and moving_variance correspond to Pytorch's bias, weight, running_mean and running_var parameters respectively. ## Code Example ```python # The following implements BatchNorm1d with MindSpore. import numpy as np import torch import mindspore.nn as nn import mindspore as ms net = nn.BatchNorm1d(num_features=4, momentum=0.8) x = ms.Tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32)) output = net(x) print(output) # Out: # [[ 0.6999965 0.4999975 0.4999975 0.59999704 ] # [ 0.4999975 0.399998 0.59999704 0.89999545 ]] # The following implements BatchNorm1d with torch. input_x = torch.tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32)) m = torch.nn.BatchNorm1d(4, momentum=0.2) output = m(input_x) print(output) # Out: # tensor([[ 0.9995, 0.9980, -0.9980, -0.9998], # [-0.9995, -0.9980, 0.9980, 0.9998]], # grad_fn=) ```