# Function Differences with tf.data.experimental.CsvDataset [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r1.7/resource/_static/logo_source_en.png)](https://gitee.com/mindspore/docs/blob/r1.7/docs/mindspore/source_en/note/api_mapping/tensorflow_diff/CsvDataset.md) ## tf.data.experimental.CsvDataset ```python class tf.data.experimental.CsvDataset( filenames, record_defaults, compression_type=None, buffer_size=None, header=False, field_delim=',', use_quote_delim=True, na_value='', select_cols=None ) ``` For more information, see [tf.data.experimental.CsvDataset](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/data/experimental/CsvDataset). ## mindspore.dataset.CSVDataset ```python class mindspore.dataset.CSVDataset( dataset_files, field_delim=', ', column_defaults=None, column_names=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None ) ``` For more information, see [mindspore.dataset.CSVDataset](https://www.mindspore.cn/docs/en/r1.7/api_python/dataset/mindspore.dataset.CSVDataset.html#mindspore.dataset.CSVDataset). ## Differences TensorFlow: Create Dataset from a list of CSV files. It supports decompression operations and can set cache size and skip file headers. MindSpore: Create Dataset from a list of CSV files. It supports setting the number of samples. ## Code Example ```python # The following implements CSVDataset with MindSpore. import mindspore.dataset as ds dataset_files = ['/tmp/example0.csv', '/tmp/example1.csv'] dataset = ds.TextFileDataset(dataset_files) # The following implements CsvDataset with TensorFlow. import tensorflow as tf filenames = ['/tmp/example0.csv', '/tmp/example1.csv'] dataset = tf.data.experimental.CsvDataset(filenames, [tf.float32, tf.constant([0.0], dtype=tf.float32), tf.int32]) ```