mindspore.ops.split
- mindspore.ops.split(tensor, split_size_or_sections, axis=0)[source]
Split the tensor into chunks along the given axis.
- Parameters
Note
If split_size_or_sections is an int type, the input tensor will be evenly divided into chunks of size split_size_or_sections . The last chunk will have a size equal to the remainder if tensor.shape[axis] is not divisible by split_size_or_sections .
If split_size_or_sections is a tuple or list, tensor will be split along axis into len( split_size_or_sections ) chunks with sizes specified by split_size_or_sections .
- Returns
Tuple of tensors.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> # case1: `split_size_or_sections` is an int type >>> input_x = mindspore.ops.arange(10).astype("float32") >>> output = mindspore.ops.split(tensor=input_x, split_size_or_sections=3) >>> print(output) (Tensor(shape=[3], dtype=Float32, value=[0.00000000e+00, 1.00000000e+00, 2.00000000e+00]), Tensor(shape=[3], dtype=Float32, value=[3.00000000e+00, 4.00000000e+00, 5.00000000e+00]), Tensor(shape=[3], dtype=Float32, value=[6.00000000e+00, 7.00000000e+00, 8.00000000e+00]), Tensor(shape=[1], dtype=Float32, value=[9.00000000e+00])) >>> # case2: `split_size_or_sections` is a list type >>> output = mindspore.ops.split(tensor=input_x, split_size_or_sections=[3, 3, 4]) >>> print(output) (Tensor(shape=[3], dtype=Float32, value=[0.00000000e+00, 1.00000000e+00, 2.00000000e+00]), Tensor(shape=[3], dtype=Float32, value=[3.00000000e+00, 4.00000000e+00, 5.00000000e+00]), Tensor(shape=[4], dtype=Float32, value=[6.00000000e+00, 7.00000000e+00, 8.00000000e+00, 9.00000000e+00]))