mindspore.ops.scatter_mul
- mindspore.ops.scatter_mul(input_x, indices, updates)[source]
Perform a multiplication update on input_x based on the specified indices and update values.
\[\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{*}= \text{updates}[i, ..., j, :]\]Note
Support implicit type conversion and type promotion.
Since Parameter objects do not support type conversion, an exception will be thrown when input_x is of a low-precision data type.
The shape of updates is indices.shape + input_x.shape[1:].
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> input_x = mindspore.Parameter(mindspore.tensor([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]], mindspore.float32), name="x") >>> indices = mindspore.tensor([0, 1], mindspore.int32) >>> updates = mindspore.tensor([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[2. 2. 2.] [4. 4. 4.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]], mindspore.float32), name="x") >>> # for indices = [[0, 1], [1, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0] >>> # step 2: [1, 1] >>> # input_x[1] = [6.0, 6.0, 6.0] * [7.0, 7.0, 7.0] = [42.0, 42.0, 42.0] >>> # input_x[1] = [42.0, 42.0, 42.0] * [9.0, 9.0, 9.0] = [378.0, 378.0, 378.0] >>> indices = mindspore.tensor([[0, 1], [1, 1]], mindspore.int32) >>> updates = mindspore.tensor([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]], mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 1. 1. 1.] [378. 378. 378.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]], mindspore.float32), name="x") >>> # for indices = [[1, 0], [1, 1]] >>> # step 1: [1, 0] >>> # input_x[0] = [1.0, 1.0, 1.0] * [3.0, 3.0, 3.0] = [3.0, 3.0, 3.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [1.0, 1.0, 1.0] = [2.0, 2.0, 2.0] >>> # step 2: [1, 1] >>> # input_x[1] = [2.0, 2.0, 2.0] * [7.0, 7.0, 7.0] = [14.0, 14.0, 14.0] >>> # input_x[1] = [14.0, 14.0, 14.0] * [9.0, 9.0, 9.0] = [126.0, 126.0, 126.0] >>> indices = mindspore.tensor([[1, 0], [1, 1]], mindspore.int32) >>> updates = mindspore.tensor([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]], mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 3. 3. 3.] [126. 126. 126.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor([[1.0, 1.0, 1.0], ... [2.0, 2.0, 2.0]], mindspore.float32), name="x") >>> # for indices = [[0, 1], [0, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0] >>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0] >>> # step 2: [0, 1] >>> # input_x[0] = [1.0, 1.0, 1.0] * [7.0, 7.0, 7.0] = [7.0, 7.0, 7.0] >>> # input_x[1] = [6.0, 6.0, 6.0] * [9.0, 9.0, 9.0] = [54.0, 54.0, 54.0] >>> indices = mindspore.tensor([[0, 1], [0, 1]], mindspore.int32) >>> updates = mindspore.tensor([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]], mindspore.float32) >>> output = mindspore.ops.scatter_mul(input_x, indices, updates) >>> print(output) [[ 7. 7. 7.] [54. 54. 54.]]