mindspore.ops.scatter_div
- mindspore.ops.scatter_div(input_x, indices, updates)[source]
Perform a division update on input_x based on the specified indices and update values.
\[\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{/}= \text{updates}[i, ..., j, :]\]Note
Support implicit type conversion and type promotion.
Since Parameter objects do not support type conversion, an exception will be thrown when input_x is of a low-precision data type.
The shape of updates is indices.shape + input_x.shape[1:].
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> input_x = mindspore.Parameter(mindspore.tensor([[6.0, 6.0, 6.0], [2.0, 2.0, 2.0]], ... mindspore.float32), name="x") >>> indices = mindspore.tensor([0, 1], mindspore.int32) >>> updates = mindspore.tensor([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], mindspore.float32) >>> output = mindspore.ops.scatter_div(input_x, indices, updates) >>> print(output) [[3. 3. 3.] [1. 1. 1.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor([[105.0, 105.0, 105.0], ... [315.0, 315.0, 315.0]], mindspore.float32), name="x") >>> # for indices = [[0, 1], [1, 1]] >>> # step 1: [0, 1] >>> # input_x[0] = [105.0, 105.0, 105.0] / [1.0, 1.0, 1.0] = [105.0, 105.0, 105.0] >>> # input_x[1] = [315.0, 315.0, 315.0] / [3.0, 3.0, 3.0] = [105.0, 105.0, 105.0] >>> # step 2: [1, 1] >>> # input_x[1] = [105.0, 105.0, 105.0] / [5.0, 5.0, 5.0] = [21.0, 21.0, 21.0] >>> # input_x[1] = [21.0, 21.0, 21.0] / [7.0, 7.0, 7.0] = [3.0, 3.0, 3.0] >>> indices = mindspore.tensor([[0, 1], [1, 1]], mindspore.int32) >>> updates = mindspore.tensor([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[5.0, 5.0, 5.0], [7.0, 7.0, 7.0]]], mindspore.float32) >>> output = mindspore.ops.scatter_div(input_x, indices, updates) >>> print(output) [[105. 105. 105.] [ 3. 3. 3.]] >>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized. >>> input_x = mindspore.Parameter(mindspore.tensor([[105.0, 105.0, 105.0], ... [315.0, 315.0, 315.0]], mindspore.float32), name="x") >>> # for indices = [[1, 0], [1, 1]] >>> # step 1: [1, 0] >>> # input_x[0] = [105.0, 105.0, 105.0] / [3.0, 3.0, 3.0] = [35.0, 35.0, 35.0] >>> # input_x[1] = [315.0, 315.0, 315.0] / [1.0, 1.0, 1.0] = [315.0, 315.0, 315.0] >>> # step 2: [1, 1] >>> # input_x[1] = [315.0, 315.0, 315.0] / [5.0, 5.0, 5.0] = [63.0 63.0 63.0] >>> # input_x[1] = [63.0 63.0 63.0] / [7.0, 7.0, 7.0] = [9.0, 9.0, 9.0] >>> indices = mindspore.tensor([[1, 0], [1, 1]], mindspore.int32) >>> updates = mindspore.tensor([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]], ... [[5.0, 5.0, 5.0], [7.0, 7.0, 7.0]]], mindspore.float32) >>> output = mindspore.ops.scatter_div(input_x, indices, updates) >>> print(output) [[35. 35. 35.] [ 9. 9. 9.]]