mindspore.ops.ApproximateEqual
- class mindspore.ops.ApproximateEqual(tolerance=1e-05)[source]
ops.ApproximateEqual is deprecated from version 2.8.0 and will be removed in a future version, please use
mindspore.Tensor.isclose()instead.Returns
Trueif abs(x-y) is smaller than tolerance element-wise, otherwise False.\[\begin{split}out_i = \begin{cases} & \text{ if } \left | x_{i} - y_{i} \right | < \text{tolerance},\ \ True \\ & \text{ if } \left | x_{i} - y_{i} \right | \ge \text{tolerance},\ \ False \end{cases}\end{split}\]where tolerance indicates Acceptable maximum tolerance.
Inputs of x and y comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower precision data type will be converted to the relatively highest precision data type.
- Parameters
tolerance (float, optional) – The maximum deviation that two elements can be considered equal. Default:
1e-05.
- Inputs:
x (Tensor) - A tensor. Must be one of the following types: float32, float16. \((N,*)\) where \(*\) means, any number of additional dimensions, its rank should be less than 8.
y (Tensor) - A tensor of the same type and shape as x.
- Outputs:
Tensor, the shape is the same as the shape of x, and the data type is bool.
- Raises
- Supported Platforms:
Deprecated
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> y = Tensor(np.array([2, 3, 6]), mindspore.float32) >>> approximate_equal = ops.ApproximateEqual(2.) >>> output = approximate_equal(x, y) >>> print(output) [ True True False]