mindspore.mint.sum
- mindspore.mint.sum(input, *, dtype=None) Tensor[source]
Calculate sum of all elements in tensor.
- Parameters
input (Tensor) – The input tensor.
- Keyword Arguments
dtype (
mindspore.dtype, optional) – The desired data type of returned tensor. DefaultNone.- Returns
Tensor
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> x = mindspore.tensor([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]], mindspore.float32) >>> mindspore.mint.sum(x) Tensor(shape=[], dtype=Float32, value= 270)
Calculate sum of tensor elements over a given dim.
Note
The dim with tensor type is only used for compatibility with older versions and is not recommended.
- Parameters
- Keyword Arguments
dtype (
mindspore.dtype, optional) – The desired data type of returned tensor. DefaultNone.- Returns
Tensor
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> x = mindspore.tensor([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]], mindspore.float32) >>> mindspore.mint.sum(x, dim=2) Tensor(shape=[3, 3], dtype=Float32, value= [[ 6.00000000e+00, 1.20000000e+01, 1.80000000e+01], [ 2.40000000e+01, 3.00000000e+01, 3.60000000e+01], [ 4.20000000e+01, 4.80000000e+01, 5.40000000e+01]]) >>> mindspore.mint.sum(x, dim=2, keepdim=True) Tensor(shape=[3, 3, 1], dtype=Float32, value= [[[ 6.00000000e+00], [ 1.20000000e+01], [ 1.80000000e+01]], [[ 2.40000000e+01], [ 3.00000000e+01], [ 3.60000000e+01]], [[ 4.20000000e+01], [ 4.80000000e+01], [ 5.40000000e+01]]]) >>> mindspore.mint.sum(x, dim=[1, 2]) Tensor(shape=[3], dtype=Float32, value= [ 3.60000000e+01, 9.00000000e+01, 1.44000000e+02])