mindspore.mint.std
- mindspore.mint.std(input, dim=None, *, correction=1, keepdim=False)[source]
Calculate the standard deviation over specified dimension(s).
The standard deviation (\(\sigma\)) is calculated as:
\[\sigma =\sqrt{\frac{1}{N-\delta N}\sum_{j-1}^{N-1}\left(s e l f_{i j}-\overline{x_{i}}\right)^{2}}\]where \(x\) is the sample set of elements, \(\bar{x}\) is the sample mean, \(N\) is the number of samples and \(\delta N\) is the correction.
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
- Keyword Arguments
- Returns
Tensor
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> input = mindspore.tensor([[1, 2, 3], [-1, 1, 4]], mindspore.float32) >>> mindspore.mint.std(input, dim=1, correction=1, keepdim=False) Tensor(shape=[2], dtype=Float32, value= [ 1.00000000e+00, 2.51661134e+00]) >>> mindspore.mint.std(input, dim=1, correction=1, keepdim=True) Tensor(shape=[2, 1], dtype=Float32, value= [[ 1.00000000e+00], [ 2.51661134e+00]]) >>> mindspore.mint.std(input, dim=[0, 1], correction=1, keepdim=False) Tensor(shape=[], dtype=Float32, value= 1.75119) >>> mindspore.mint.std(input, dim=[0, 1], correction=1, keepdim=True) Tensor(shape=[1, 1], dtype=Float32, value= [[ 1.75119019e+00]]) >>> mindspore.mint.std(input, dim=[0, 1], correction=2, keepdim=True) Tensor(shape=[1, 1], dtype=Float32, value= [[ 1.95789003e+00]])