mindspore.mint.norm
- mindspore.mint.norm(input, p='fro', dim=None, keepdim=False, *, dtype=None)[source]
Compute the matrix norm or vector norm of the tensor along a specified dimension.
p is the calculation mode of norm. The following norm modes are supported.
p
norm for matrices
norm for vectors
'fro'
Frobenius norm
– not supported –
'nuc'
nuclear norm
– not supported –
other int or float
– not supported –
\(sum(abs(x)^{p})^{(1 / p)}\)
- Parameters
input (Tensor) – The input tensor.
p (Union[bool, int, float, inf, -inf, 'fro', 'nuc'], optional) – Specify the kind of norm to take. Default
fro.dim (Union[int, List(int), Tuple(int)], optional) – Specify the dimension for computation. Default
None.keepdim (bool, optional) – Whether the output tensor has dim retained. Default
False.
- Keyword Arguments
dtype (
mindspore.dtype, optional) – When set, input will be converted to the specified type, dtype, before calculating. DefaultNone.- Returns
Tensor
Note
Dynamic shape, Dynamic rank and mutable input is not supported in graph mode (mode=mindspore.GRAPH_MODE).
Depending on the input range of values, the Ascend backend calculation results may have precision errors.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> data_range = mindspore.ops.arange(-13, 13, dtype=mindspore.float32) >>> x = data_range[data_range != 0] >>> y = x.reshape(5, 5) >>> print(mindspore.mint.norm(x, 2.0)) 38.327534