mindspore.mint.nn.ReflectionPad3d
- class mindspore.mint.nn.ReflectionPad3d(padding)[source]
Pad the last 3 dimension of input tensor using the reflection of the input boundary.
For more information, please refer to
mindspore.mint.nn.functional.pad().Warning
This is an experimental API that is subject to change or deletion.
- Inputs:
input (Tensor) - 4D or 5D input Tensor with shape: \((N, D_{in}, H_{in}, W_{in})\) or \((N, C, D_{in}, H_{in}, W_{in})\).
- Outputs:
Tensor, the tensor after padding.
- Raises
TypeError – If padding is not an integer of a list or tuple of 6 integers.
TypeError – If input is not Tensor.
ValueError – If padding contains negative value.
ValueError – If padding is a tuple or list, and the length does not match the tensor dimension.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> import mindspore as ms >>> arr = np.arange(8).astype(np.float32).reshape((1, 2, 2, 2)) >>> x = ms.Tensor(arr) >>> # x has shape (1, 2, 2, 2) >>> padding = (1, 1, 1, 0, 0, 1) >>> pad3d = ms.mint.nn.ReflectionPad3d(padding) >>> out = pad3d(x) >>> # The first dimension of x remains the same. >>> # The second dimension of x: D_out = D_in + pad_front + pad_back = 2 + 0 + 1 = 3 >>> # The third dimension of x: H_out = H_in + pad_up + pad_down = 2 + 1 + 0 = 3 >>> # The last dimension of x: W_out = W_in + pad_left + pad_right = 2 + 1 + 1 = 4 >>> # The shape of out is (1, 3, 3, 4) >>> print(out) [[[[3. 2. 3. 2.] [1. 0. 1. 0.] [3. 2. 3. 2.]] [[7. 6. 7. 6.] [5. 4. 5. 4.] [7. 6. 7. 6.]] [[3. 2. 3. 2.] [1. 0. 1. 0.] [3. 2. 3. 2.]]]]