mindspore.mint.nn.AdaptiveMaxPool1d
- class mindspore.mint.nn.AdaptiveMaxPool1d(output_size, return_indices=False)[source]
Applies a 1D adaptive max pooling over an input signal composed of several input planes.
The output is of size \(L_{out}\) , for any input size. The number of output features is equal to the number of input planes.
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
- Inputs:
input (Tensor) - The input with shape \((N, C, L_{in})\) or \((C, L_{in})\) .
- Outputs:
Union(Tensor, tuple(Tensor, Tensor)).
If return_indices is False, output is a Tensor, with shape \((N, C, L_{out})\). It has the same data type as x.
If return_indices is True, output is a Tuple of 2 Tensors, representing the result and where the max values are generated.
- Raises
TypeError – If input is not a tensor.
TypeError – If dtype of input is not float16, float32 or float64.
TypeError – If output_size is not int or tuple.
TypeError – If return_indices is not a bool.
ValueError – If output_size is a tuple and the length of output_size is not 1.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> from mindspore import Tensor, mint >>> import numpy as np >>> input = Tensor(np.array([[[2, 1, 2], [2, 3, 5]]]), mindspore.float16) >>> net = mint.nn.AdaptiveMaxPool1d(3) >>> output = net(input) >>> print(output) [[[2. 1. 2.] [2. 3. 5.]]]