mindspore.mint.nn.AdaptiveAvgPool1d
- class mindspore.mint.nn.AdaptiveAvgPool1d(output_size)[source]
Apply a 1-D adaptive average pooling over an input signal composed of several input planes.
The output is of size \(L_{out}\), for any input size. The number of output features is equal to the number of input planes.
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
output_size (int) – The target output size \(L_{out}\).
- Inputs:
input (Tensor) - The input tensor with shape \((N, C, L_{in})\) or \((C, L_{in})\).
- Outputs:
Tensor.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> input = mindspore.tensor([[[2, 1, 2], [2, 3, 5]]], mindspore.float16) >>> net = mindspore.mint.nn.AdaptiveAvgPool1d(3) >>> output = net(input) >>> print(output) [[[2. 1. 2.] [2. 3. 5.]]]