mindspore.mint.matmul
- mindspore.mint.matmul(input, other)[source]
Return the matrix product of two tensors.
Note
input and other must have same data type, and both of them must be not scalar and support broadcast.
On Ascend, the rank of input or other must be between 1 and 6.
input and other must not be empty tensor when executing the backward process for dynamic shape case in JIT mode.
- Parameters
- Returns
Tensor or scalar
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> # case 1 : Reasonable application of broadcast mechanism. >>> input = mindspore.ops.arange(24, dtype=mindspore.float32).reshape(2, 3, 4) >>> other = mindspore.ops.arange(20, dtype=mindspore.float32).reshape(4, 5) >>> output = mindspore.mint.matmul(input, other) >>> print(output) [[[ 70, 76, 82, 88, 94], [ 190, 212, 234, 256, 278], [ 310, 348, 386, 424, 462]], [[ 430, 484, 538, 592, 646], [ 550, 620, 690, 760, 830], [ 670, 756, 842, 928, 1014]]] >>> >>> # case 2 : The rank of `input` is 1. >>> input = mindspore.ops.ones(([1, 2])) >>> other = mindspore.ops.ones(([2])) >>> mindspore.mint.matmul(input, other) Tensor(shape=[1], dtype=Float32, value= [ 2.00000000e+00])