mindspore.mint.empty
- mindspore.mint.empty(*size, *, dtype=None, device=None, pin_memory=False) Tensor[source]
Creates a tensor with uninitialized data, whose shape, dtype and device are described by the argument size, dtype and device respectively. If pin_memory is True, the tensor will be allocated in pinned memory.
- Parameters
size (Union[tuple[int], list[int], int]) – The specified shape of output tensor. Can be variable numbers of positive integers or tuple or list containing positive integers.
- Keyword Arguments
dtype (
mindspore.dtype, optional) – The specified type of output tensor. If dtype isNone, mindspore.float32 will be used. Default:None.device (str, optional) – The specified device of the output tensor. In PyNative mode,
"Ascend","npu","cpu"and"CPU"are supported. In graph mode O0,"Ascend"and"npu"are supported. If device = None, mindspore.context.device_target will be used. DefaultNone.pin_memory (bool, optional) – If set pin_memory to True, the tensor will be allocated in pinned memory, and device should be
"cpu"or"CPU". DefaultFalse.
- Returns
Tensor, whose shape, dtype and device are defined by input.
- Raises
TypeError – If size is neither an int nor a tuple or list of int.
RuntimeError – If pin_memory is True, and device is neither
"cpu"nor"CPU".
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> from mindspore import mint >>> output = mint.empty((2, 3), dtype=mindspore.float32) >>> print(output) [[0. 0. 0.] [0. 0. 0.]]