mindspore.Tensor.uniform_
- Tensor.uniform_(from_=0, to=1, *, generator=None)[source]
- Update the self Tensor in place by generating random numbers sampled from uniform distribution in the half-open interval \([from\_, to)\). \[P(x)= \frac{1}{to - from\_}\]- Warning - This is an experimental API that is subject to change or deletion. - Parameters
- from_ (Union[number.Number, Tensor], optional) – The lower bound of the uniform distribution, it can be a scalar value or a tensor of any dimension with a single element. Default: - 0.
- to (Union[number.Number, Tensor], optional) – The upper bound of the uniform distribution, it can be a scalar value or a tensor of any dimension with a single element. Default: - 1.
 
- Keyword Arguments
- generator ( - mindspore.Generator, optional) – a pseudorandom number generator. Default:- None, uses the default pseudorandom number generator.
- Returns
- Return self Tensor. 
- Raises
- TypeError – If from_ or to is neither a number nor a Tensor. 
- TypeError – If dtype of from or to is not one of: bool, int8, int16, int32, int64, uint8, float32, float64. 
- ValueError – If from_ or to is Tensor but contains multiple elements. 
- RuntimeError – If from_ is larger than to. 
 
 - Supported Platforms:
- Ascend
 - Examples - >>> import mindspore >>> x = mindspore.ops.ones((4, 2)) >>> generator = mindspore.Generator() >>> generator.manual_seed(100) >>> output = x.uniform_(1., 2., generator=generator) >>> print(output.shape) (4, 2)