mindspore.Tensor.to
- Tensor.to(dtype=None, non_blocking=False, copy=False) Tensor [source]
Returns a tensor with the new specified data type.
Note
When converting complex numbers to boolean type, the imaginary part of the complex number is not taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False.
non_blocking and copy do not take effect in GRAPH_MODE or within jit.
- Parameters
dtype (dtype.Number, optional) – The valid data type of the output tensor. Default:
None
.non_blocking (bool, optional) – Data type conversion asynchronously. If
True
, convert data type asynchronously. IfFalse
, convert data type synchronously. Default:False
.copy (bool, optional) – When copy is set
True
, a new Tensor is created even when then Tensor already matches the desired conversion. Default:False
.
- Returns
Tensor, the data type of the tensor is dtype .
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) >>> input = Tensor(input_np) >>> dtype = mindspore.int32 >>> output = input.to(dtype) >>> print(output.dtype) Int32 >>> print(output.shape) (2, 3, 4, 5)
Returns a tensor with the new specified data type and device type.
Note
device , non_blocking and copy do not take effect in GRAPH_MODE or within jit.
- Parameters
device (string, optional) – The device type of the output tensor. Default:
None
.dtype (dtype.Number, optional) – The valid data type of the output tensor. Default:
None
.non_blocking (bool, optional) – Data type conversion asynchronously. If
True
, convert data type asynchronously. IfFalse
, convert data type synchronously. Default:False
.copy (bool, optional) – When copy is set
True
, a new Tensor is created even when then Tensor already matches the desired conversion. Default:False
.
- Returns
Tensor, the specified device type and data type of the tensor.
- Supported Platforms:
Ascend
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) >>> input = Tensor(input_np) >>> dtype = mindspore.int32 >>> output = input.to("Ascend") >>> print(output.device) "Ascend:0"
Returns a tensor with same device and dtype as the Tensor other .
Note
non_blocking and copy do not take effect in GRAPH_MODE or within jit.
- Parameters
other (Tensor) – The returned Tensor has the same device and dtype as other .
non_blocking (bool, optional) – Data type conversion asynchronously. If
True
, convert data type asynchronously. IfFalse
, convert data type synchronously. Default:False
.copy (bool, optional) – When copy is set
True
, a new Tensor is created even when then Tensor already matches the desired conversion. Default:False
.
- Returns
Tensor, same device and dtype as the Tensor other .
- Supported Platforms:
Ascend
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) >>> input = Tensor(input_np) >>> other = input.to("Ascend", dtype=mindspore.float16) >> output = input.to(other) >>> print(output.device) "Ascend:0" >>> print(output.dtype) float16