mindspore.experimental.optim.RAdam
- class mindspore.experimental.optim.RAdam(params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0)[source]
Implements RAdam algorithm.
\[\begin{split}\begin{align*} &\rule{180mm}{0.4pt} \\ &\textbf{Input}: \gamma \text{ (lr)}, \: \beta_1, \beta_2 \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \: \lambda \text{ (weightdecay)}, \: \epsilon \text{ (epsilon)} \\ &\textbf{Initialize}: \begin{cases} m_0 \leftarrow 0 \text{ (first moment)} \\ v_0 \leftarrow 0 \text{ (second moment)} \\ \rho_{\infty} \xleftarrow{\text{def}} \dfrac{2}{1 - \beta_2} - 1 \end{cases} \\ &\rule{180mm}{0.4pt} \\ &\textbf{For } t = 1 \text{ to } \ldots \text{ do}: \\ &\quad g_t \leftarrow \nabla_{\theta} f_t(\theta_{t - 1}) \\ &\quad \text{If } \lambda \neq 0: \\ &\quad\quad g_t \leftarrow g_t + \lambda \theta_{t - 1} \\ &\quad m_t \leftarrow \beta_1 m_{t - 1} + (1 - \beta_1) g_t \\ &\quad v_t \leftarrow \beta_2 v_{t - 1} + (1 - \beta_2) g_t^2 \\ &\quad \widehat{m_t} \leftarrow \dfrac{m_t}{1 - \beta_1^t} \\ &\quad \text{Let } \rho_t' = 2 t \beta_2^t /(1 - \beta_2^t) \quad \text{(auxiliary variable)} \\ &\quad \rho_t \leftarrow \rho_{\infty} - \rho_t' \\ &\quad \text{If } \rho_t > 5: \\ &\quad\quad l_t \leftarrow \dfrac{\sqrt{1 - \beta_2^t}}{\sqrt{v_t} + \epsilon} \\ &\quad\quad r_t \leftarrow \sqrt{\dfrac{(\rho_t - 4)(\rho_t - 2)\rho_{\infty}}{(\rho_{\infty} - 4) (\rho_{\infty} - 2) \rho_t}} \\ &\quad\quad \theta_t \leftarrow \theta_{t - 1} - \gamma \widehat{m_t} r_t l_t \\ &\quad \text{Else}: \\ &\quad\quad \theta_t \leftarrow \theta_{t - 1} - \gamma \widehat{m_t} \\ &\rule{180mm}{0.4pt} \\ &\bf{Return}: \theta_t \\ &\rule{180mm}{0.4pt} \end{align*}\end{split}\]Warning
This is an experimental optimizer API that is subject to change. This module must be used with lr scheduler module in LRScheduler Class .
- Parameters
params (Union[list(Parameter), list(dict)]) – list of parameters to optimize or dicts defining parameter groups.
lr (Union[int, float, Tensor], optional) – learning rate. Default:
1e-3
.betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square. Default:
(0.9, 0.999)
.eps (float, optional) – term added to the denominator to improve numerical stability. Default:
1e-8
.weight_decay (float, optional) – weight decay (L2 penalty). Default:
0.0
.
- Inputs:
gradients (tuple[Tensor]) - The gradients of params.
- Raises
ValueError – If the learning rate is not int, float or Tensor.
ValueError – If the learning rate is less than 0.
ValueError – If the eps is less than 0.0.
ValueError – If the weight_decay is less than 0.
ValueError – If elements of betas not in the range of [0, 1).
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> from mindspore import nn >>> from mindspore.experimental import optim >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> optimizer = optim.RAdam(net.trainable_params(), lr=0.1) >>> def forward_fn(data, label): ... logits = net(data) ... loss = loss_fn(logits, label) ... return loss, logits >>> grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) >>> def train_step(data, label): ... (loss, _), grads = grad_fn(data, label) ... optimizer(grads) ... return loss