mindspore.Tensor.bernoulli_
- Tensor.bernoulli_(p=0.5, *, generator=None)[source]
Fills each location of self with an independent sample from Bernoulli(p).
- Parameters
p (Union[number.Number, Tensor], optional) – p should either be a scalar or tensor containing probabilities to be used for drawing the binary random number, between
0
and1
. If it is a tensor, p must be floating point. Default:0.5
.- Keyword Arguments
generator (
mindspore.Generator
, optional) – a pseudorandom number generator. Default:None
, uses the default pseudorandom number generator.- Returns
The input tensor.
- Supported Platforms:
Ascend
Examples
>>> from mindspore import Tensor >>> x = Tensor([[2, 3, 4], [1, 2, 3]]) >>> p = 0.1 >>> print(x.bernoulli_(p).shape) (2, 3)