mindspore.dataset.dataloader

This module provides iterators for loading datasets. It supports loading both Map Style and Iterable Style datasets, and offers multi-process concurrent loading.

Data Loader

mindspore.dataset.dataloader.DataLoader

Data loader provides an iterator over the given dataset.

Datasets

mindspore.dataset.dataloader.Dataset

Base class for map style datasets.

mindspore.dataset.dataloader.IterableDataset

Base class for iterable datasets.

mindspore.dataset.dataloader.TensorDataset

Each sample is retrieved by indexing the input tensors along their first dimension.

Samplers

mindspore.dataset.dataloader.Sampler

Base Class of the Sampler

mindspore.dataset.dataloader.SequentialSampler

Samples the dataset elements sequentially.

mindspore.dataset.dataloader.RandomSampler

Samples the dataset elements randomly.

mindspore.dataset.dataloader.BatchSampler

A sampler that generates mini-batch indices each time.

mindspore.dataset.dataloader.DistributedSampler

A sampler that partitioning datasets for distributed training.

Collate Functions

mindspore.dataset.dataloader.default_collate

Take in a batch of data and put the elements within the batch into a tensor with an additional outer dimension - batch size.

mindspore.dataset.dataloader.default_convert

Convert each NumPy array element into a mindspore.Tensor.

mindspore.dataset.dataloader._utils.collate.collate

General collate function that handles collection type of element within each batch.

Utilities

mindspore.dataset.dataloader.get_worker_info

Get the information about the current DataLoader worker process.