Source code for mindspore.dataset.transforms.py_transforms

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The module transforms.py_transform is implemented based on Python. It provides common
operations including OneHotOp.
"""
import json
import sys
import numpy as np

from .validators import check_one_hot_op, check_compose_list, check_random_apply, check_transforms_list, \
    check_compose_call
from . import py_transforms_util as util
from .c_transforms import TensorOperation


def not_random(function):
    """
    Specify the function as "not random", i.e., it produces deterministic result.
    A Python function can only be cached after it is specified as "not random".
    """
    function.random = False
    return function


class PyTensorOperation:
    """
    Base Python Tensor Operations class
    """

    def to_json(self):
        """
        Base to_json for Python tensor operations class
        """
        json_obj = {}
        json_trans = {}
        if "transforms" in self.__dict__.keys():
            # operations which have transforms as input, need to call _to_json() for each transform to serialize
            json_list = []
            for transform in self.transforms:
                json_list.append(json.loads(transform.to_json()))
            json_trans["transforms"] = json_list
            self.__dict__.pop("transforms")
        if "output_type" in self.__dict__.keys():
            json_trans["output_type"] = np.dtype(
                self.__dict__["output_type"]).name
            self.__dict__.pop("output_type")
        json_obj["tensor_op_params"] = self.__dict__
        # append transforms to the tensor_op_params of the operation
        json_obj["tensor_op_params"].update(json_trans)
        json_obj["tensor_op_name"] = self.__class__.__name__
        json_obj["python_module"] = self.__class__.__module__
        return json.dumps(json_obj)

    @classmethod
    def from_json(cls, json_string):
        """
        Base from_json for Python tensor operations class
        """
        json_obj = json.loads(json_string)
        new_op = cls.__new__(cls)
        new_op.__dict__ = json_obj
        if "transforms" in json_obj.keys():
            # operations which have transforms as input, need to call _from_json() for each transform to deseriallize
            transforms = []
            for json_op in json_obj["transforms"]:
                transforms.append(getattr(
                    sys.modules[json_op["python_module"]], json_op["tensor_op_name"]).from_json(
                        json.dumps(json_op["tensor_op_params"])))
            new_op.transforms = transforms
        if "output_type" in json_obj.keys():
            output_type = np.dtype(json_obj["output_type"])
            new_op.output_type = output_type
        return new_op


[docs]class OneHotOp(PyTensorOperation): """ Apply one hot encoding transformation to the input label, make label be more smoothing and continuous. Args: num_classes (int): Number of classes of objects in dataset. It should be larger than the largest label number in the dataset. smoothing_rate (float, optional): Adjustable hyperparameter for label smoothing level. (Default=0.0 means no smoothing is applied.) Examples: >>> # Assume that dataset has 10 classes, thus the label ranges from 0 to 9 >>> transforms_list = [py_transforms.OneHotOp(num_classes=10, smoothing_rate=0.1)] >>> transform = py_transforms.Compose(transforms_list) >>> mnist_dataset = mnist_dataset.map(input_columns=["label"], operations=transform) """ @check_one_hot_op def __init__(self, num_classes, smoothing_rate=0.0): self.num_classes = num_classes self.smoothing_rate = smoothing_rate self.random = False def __call__(self, label): """ Call method. Args: label (numpy.ndarray): label to be applied label smoothing. Returns: label (numpy.ndarray), label after being Smoothed. """ return util.one_hot_encoding(label, self.num_classes, self.smoothing_rate)
[docs]class Compose(PyTensorOperation): """ Compose a list of transforms. .. Note:: Compose takes a list of transformations either provided in py_transforms or from user-defined implementation; each can be an initialized transformation class or a lambda function, as long as the output from the last transformation is a single tensor of type numpy.ndarray. See below for an example of how to use Compose with py_transforms classes and check out FiveCrop or TenCrop for the use of them in conjunction with lambda functions. Args: transforms (list): List of transformations to be applied. Examples: >>> image_folder_dataset_dir = "/path/to/image_folder_dataset_directory" >>> # create a dataset that reads all files in dataset_dir with 8 threads >>> image_folder_dataset = ds.ImageFolderDataset(image_folder_dataset_dir, num_parallel_workers=8) >>> # create a list of transformations to be applied to the image data >>> transform = py_transforms.Compose([py_vision.Decode(), ... py_vision.RandomHorizontalFlip(0.5), ... py_vision.ToTensor(), ... py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), ... py_vision.RandomErasing()]) >>> # apply the transform to the dataset through dataset.map function >>> image_folder_dataset = image_folder_dataset.map(operations=transform, input_columns=["image"]) >>> >>> # Compose is also be invoked implicitly, by just passing in a list of ops >>> # the above example then becomes: >>> transforms_list = [py_vision.Decode(), ... py_vision.RandomHorizontalFlip(0.5), ... py_vision.ToTensor(), ... py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), ... py_vision.RandomErasing()] >>> >>> # apply the transform to the dataset through dataset.map() >>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list, input_columns=["image"]) >>> >>> # Certain C++ and Python ops can be combined, but not all of them >>> # An example of combined operations >>> arr = [0, 1] >>> dataset = ds.NumpySlicesDataset(arr, column_names=["cols"], shuffle=False) >>> transformed_list = [py_transforms.OneHotOp(2), c_transforms.Mask(c_transforms.Relational.EQ, 1)] >>> dataset = dataset.map(operations=transformed_list, input_columns=["cols"]) >>> >>> # Here is an example of mixing vision ops >>> import numpy as np >>> op_list=[c_vision.Decode(), ... c_vision.Resize((224, 244)), ... py_vision.ToPIL(), ... np.array, # need to convert PIL image to a NumPy array to pass it to C++ operation ... c_vision.Resize((24, 24))] >>> image_folder_dataset = image_folder_dataset.map(operations=op_list, input_columns=["image"]) """ @check_compose_list def __init__(self, transforms): self.transforms = transforms if all(hasattr(transform, "random") and not transform.random for transform in self.transforms): self.random = False @check_compose_call def __call__(self, *args): """ Call method. Returns: lambda function, Lambda function that takes in an args to apply transformations on. """ return util.compose(self.transforms, *args)
[docs] @staticmethod def reduce(operations): """ Wraps adjacent Python operations in a Compose to allow mixing of Python and C++ operations. Args: operations (list): list of tensor operations. Returns: list, the reduced list of operations. """ if len(operations) == 1: if str(operations).find("c_transform") >= 0 or isinstance(operations[0], TensorOperation): return operations return [util.FuncWrapper(operations[0])] new_ops, start_ind, end_ind = [], 0, 0 for i, op in enumerate(operations): if str(op).find("c_transform") >= 0: # reset counts if start_ind != end_ind: new_ops.append(Compose(operations[start_ind:end_ind])) new_ops.append(op) start_ind, end_ind = i + 1, i + 1 else: end_ind += 1 # do additional check in case the last operation is a Python operation if start_ind != end_ind: new_ops.append(Compose(operations[start_ind:end_ind])) return new_ops
[docs]class RandomApply(PyTensorOperation): """ Randomly perform a series of transforms with a given probability. Args: transforms (list): List of transformations to apply. prob (float, optional): The probability to apply the transformation list (default=0.5). Examples: >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = [py_vision.RandomHorizontalFlip(0.5), ... py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), ... py_vision.RandomErasing()] >>> transforms = Compose([py_vision.Decode(), ... py_transforms.RandomApply(transforms_list, prob=0.6), ... py_vision.ToTensor()]) >>> image_folder_dataset = image_folder_dataset.map(operations=transforms, input_columns=["image"]) """ @check_random_apply def __init__(self, transforms, prob=0.5): self.prob = prob self.transforms = transforms def __call__(self, img): """ Call method. Args: img (PIL image): Image to be randomly applied a list transformations. Returns: img (PIL image), Transformed image. """ return util.random_apply(img, self.transforms, self.prob)
[docs]class RandomChoice(PyTensorOperation): """ Randomly select one transform from a series of transforms and applies that on the image. Args: transforms (list): List of transformations to be chosen from to apply. Examples: >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = [py_vision.RandomHorizontalFlip(0.5), ... py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), ... py_vision.RandomErasing()] >>> transforms = Compose([py_vision.Decode(), ... py_transforms.RandomChoice(transforms_list), ... py_vision.ToTensor()]) >>> image_folder_dataset = image_folder_dataset.map(operations=transforms, input_columns=["image"]) """ @check_transforms_list def __init__(self, transforms): self.transforms = transforms def __call__(self, img): """ Call method. Args: img (PIL image): Image to be applied transformation. Returns: img (PIL image), Transformed image. """ return util.random_choice(img, self.transforms)
[docs]class RandomOrder(PyTensorOperation): """ Perform a series of transforms to the input PIL image in a random order. Args: transforms (list): List of the transformations to apply. Examples: >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = [py_vision.RandomHorizontalFlip(0.5), ... py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), ... py_vision.RandomErasing()] >>> transforms = Compose([py_vision.Decode(), ... py_transforms.RandomOrder(transforms_list), ... py_vision.ToTensor()]) >>> image_folder_dataset = image_folder_dataset.map(operations=transforms, input_columns=["image"]) """ @check_transforms_list def __init__(self, transforms): self.transforms = transforms def __call__(self, img): """ Call method. Args: img (PIL image): Image to apply transformations in a random order. Returns: img (PIL image), Transformed image. """ return util.random_order(img, self.transforms)