# 图像分类模型支持(Lite) [![查看源文件](./_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.0/docs/note/source_zh_cn/image_classification_lite.md) ## 图像分类介绍 图像分类模型可以预测图片中出现哪些物体,识别出图片中出现物体列表及其概率。 比如下图经过模型推理的分类结果为下表: ![image_classification](images/image_classification_result.png) | 类别 | 概率 | | ---------- | ------ | | plant | 0.9359 | | flower | 0.8641 | | tree | 0.8584 | | houseplant | 0.7867 | 使用MindSpore Lite实现图像分类的[示例代码](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/lite/image_classification)。 ## 图像分类模型列表 下表是使用MindSpore Lite推理的部分图像分类模型的数据。 > 下表的性能是在mate30手机上测试的。 | 模型名称 | 大小(Mb) | Top1 | Top5 | F1 | CPU 4线程时延(ms) | |-----------------------| :----------: | :----------: | :----------: | :----------: | :-----------: | | [MobileNetV2](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms) | 11.5 | - | - | 65.5% | 14.595 | | [Inceptionv3](https://download.mindspore.cn/model_zoo/official/lite/inceptionv3_lite/inceptionv3.ms) | 90.9 | 78.62% | 94.08% | - | 92.086 | | [Shufflenetv2](https://download.mindspore.cn/model_zoo/official/lite/shufflenetv2_lite/shufflenetv2.ms) | 8.8 | 67.74% | 87.62% | - | 8.303 | | [GoogleNet](https://download.mindspore.cn/model_zoo/official/lite/googlenet_lite/googlenet.ms) | 25.3 | 72.2% | 90.06% | - | 23.257 | | [ResNext50](https://download.mindspore.cn/model_zoo/official/lite/resnext50_lite/resnext50.ms) | 95.8 | 73.1% | 91.21% | - | 138.164 |