Source code for mindspore.nn.loss.loss

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""loss"""
import mindspore
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore import nn
from mindspore.ops.primitive import constexpr
from mindspore.ops import _selected_ops
from mindspore.nn.cell import Cell
from mindspore.nn.layer.activation import get_activation
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from ... import context


class _Loss(Cell):
    """
    Base class for other losses.
    """
    def __init__(self, reduction='mean'):
        super(_Loss, self).__init__()
        if reduction is None:
            reduction = 'none'

        if reduction not in ('mean', 'sum', 'none'):
            raise ValueError(f"reduction method for {reduction.lower()} is not supported")

        self.average = True
        self.reduce = True
        if reduction == 'sum':
            self.average = False
        if reduction == 'none':
            self.reduce = False

        self.reduce_mean = _selected_ops.ReduceMean()
        self.reduce_sum = P.ReduceSum()
        self.mul = P.Mul()
        self.cast = P.Cast()

    def get_axis(self, x):
        shape = F.shape(x)
        length = F.tuple_len(shape)
        perm = F.make_range(0, length)
        return perm

    def get_loss(self, x, weights=1.0):
        """
        Computes the weighted loss
        Args:
            weights: Optional `Tensor` whose rank is either 0, or the same rank as inputs, and must be broadcastable to
                inputs (i.e., all dimensions must be either `1`, or the same as the corresponding inputs dimension).
        """
        input_dtype = x.dtype
        x = self.cast(x, mstype.float32)
        weights = self.cast(weights, mstype.float32)
        x = self.mul(weights, x)
        if self.reduce and self.average:
            x = self.reduce_mean(x, self.get_axis(x))
        if self.reduce and not self.average:
            x = self.reduce_sum(x, self.get_axis(x))
        x = self.cast(x, input_dtype)
        return x

    def construct(self, base, target):
        raise NotImplementedError


@constexpr
def _check_input_type(param_name, input_data, allow_dtype, cls_name):
    if input_data is not None and not isinstance(input_data, allow_dtype):
        raise TypeError(f"For '{cls_name}', the '{param_name}' should be '{allow_dtype}', "
                        f"but got '{F.typeof(input_data)}'")


[docs]class L1Loss(_Loss): r""" L1Loss creates a criterion to measure the mean absolute error (MAE) between :math:`x` and :math:`y` element-wise, where :math:`x` is the input Tensor and :math:`y` is the target Tensor. For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`, the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as: .. math:: L(x, y) = \{l_1,\dots,l_N\}, \quad \text{with } l_n = \left| x_n - y_n \right| When argument reduction is 'mean', the mean value of :math:`L(x, y)` will be returned. When argument reduction is 'sum', the sum of :math:`L(x, y)` will be returned. :math:`N` is the batch size. Args: reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". Default: "mean". Inputs: - **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`. - **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. Outputs: Tensor, loss float tensor. Raises: ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = nn.L1Loss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 0.33333334 """ def __init__(self, reduction='mean'): super(L1Loss, self).__init__(reduction) self.abs = P.Abs() def construct(self, base, target): _check_input_type('logits', base, Tensor, self.cls_name) _check_input_type('labels', target, Tensor, self.cls_name) x = self.abs(base - target) return self.get_loss(x)
[docs]class MSELoss(_Loss): r""" MSELoss creates a criterion to measure the mean squared error (squared L2-norm) between :math:`x` and :math:`y` element-wise, where :math:`x` is the input and :math:`y` is the target. For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`, the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as: .. math:: L(x, y) = \{l_1,\dots,l_N\}, \quad \text{with} \quad l_n = (x_n - y_n)^2. When argument reduction is 'mean', the mean value of :math:`L(x, y)` will be returned. When argument reduction is 'sum', the sum of :math:`L(x, y)` will be returned. :math:`N` is the batch size. Args: reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". Default: "mean". Inputs: - **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`. - **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. Outputs: Tensor, weighted loss float tensor. Raises: ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = nn.MSELoss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 0.33333334 """ def construct(self, base, target): _check_input_type('logits', base, Tensor, self.cls_name) _check_input_type('labels', target, Tensor, self.cls_name) x = F.square(base - target) return self.get_loss(x)
[docs]class RMSELoss(_Loss): r""" RMSELoss creates a standard to measure the root mean square error between :math:`x` and :math:`y` element-wise, where :math:`x` is the input and :math:`y` is the target. For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`M` and :math:`N`, the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as: .. math:: loss = \begin{cases} \sqrt{\frac{1}{M}\sum_{m=1,n=1}^{M,N}{(x_m-y_n)^2}}, & \text {if M > N } \\\\ \sqrt{\frac{1}{N}\sum_{m=1,n=1}^{M,N}{(x_m-y_n)^2}}, &\text{if M < N } \end{cases} Inputs: - **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_M)`. - **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_N)`. Outputs: Tensor, weighted loss float tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = nn.RMSELoss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 0.57735026 """ def __init__(self): super(RMSELoss, self).__init__() self.MSELoss = MSELoss() def construct(self, logits, label): rmse_loss = F.sqrt(self.MSELoss(logits, label)) return rmse_loss
[docs]class MAELoss(_Loss): r""" MAELoss creates a standard to measure the average absolute error between :math:`x` and :math:`y` element-wise, where :math:`x` is the input and :math:`y` is the target. For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`M` and :math:`N`, the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as: .. math:: MAE = \begin{cases} \sqrt{\frac{1}{M}\sum_{m=1,n=1}^{M,N}{|x_m-y_n|}}, & \text {if M > N } \\\\ \sqrt{\frac{1}{N}\sum_{m=1,n=1}^{M,N}{|x_m-y_n|}}, &\text{if M < N } \end{cases} Args: reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". Default: "mean". Inputs: - **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_M)`. - **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_N)`. Outputs: Tensor, weighted loss float tensor. Raises: ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = nn.MAELoss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 0.33333334 """ def __init__(self, reduction='mean'): super(MAELoss, self).__init__(reduction) self.abs = P.Abs() def construct(self, logits, label): _check_input_type('logits', logits, Tensor, self.cls_name) _check_input_type('labels', label, Tensor, self.cls_name) x = self.abs(logits - label) return self.get_loss(x)
[docs]class SmoothL1Loss(_Loss): r""" A loss class for learning region proposals. SmoothL1Loss can be regarded as modified version of L1Loss or a combination of L1Loss and L2Loss. L1Loss computes the element-wise absolute difference between two input Tensor while L2Loss computes the squared difference between two input Tensor. L2Loss often leads to faster convergence but it is less robust to outliers. Given two input :math:`x,\ y` of length :math:`N`, the unreduced SmoothL1Loss can be described as follows: .. math:: L_{i} = \begin{cases} \frac{0.5 (x_i - y_i)^{2}}{\text{beta}}, & \text{if } |x_i - y_i| < \text{beta} \\ |x_i - y_i| - 0.5 \text{beta}, & \text{otherwise. } \end{cases} Here :math:`\text{beta}` controls the point where the loss function changes from quadratic to linear. Its default value is 1.0. :math:`N` is the batch size. This function returns an unreduced loss Tensor. Args: beta (float): A parameter used to control the point where the function will change from quadratic to linear. Default: 1.0. Inputs: - **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`. Data type must be float16 or float32. - **labels** (Tensor) - Ground truth data, with the same type and shape as `logits`. Outputs: Tensor, loss float tensor. Raises: TypeError: If `beta` is not a float. TypeError: If dtype of `logits` or `labels` is neither float16 not float32. ValueError: If `beta` is less than or equal to 0. ValueError: If shape of `logits` is not the same as `labels`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = nn.SmoothL1Loss() >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) [0. 0. 0.5] """ def __init__(self, beta=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.smooth_l1_loss = P.SmoothL1Loss(self.beta) def construct(self, base, target): _check_input_type('logits', base, Tensor, self.cls_name) _check_input_type('labels', target, Tensor, self.cls_name) return self.smooth_l1_loss(base, target)
[docs]class SoftmaxCrossEntropyWithLogits(_Loss): r""" Computes softmax cross entropy between logits and labels. Measures the distribution error between the probabilities of the input (computed with softmax function) and the target where the classes are mutually exclusive (only one class is positive) using cross entropy loss. Typical input into this function is unnormalized scores denoted as x whose shape is (N, C), and the corresponding targets. For each instance :math:`x_i`, i ranges from 0 to N-1, the loss is given as: .. math:: \ell(x_i, c) = - \log\left(\frac{\exp(x_i[c])}{\sum_j \exp(x_i[j])}\right) = -x_i[c] + \log\left(\sum_j \exp(x_i[j])\right) where :math:`x_i` is a 1D score Tensor, :math:`c` is the index of 1 in one-hot. Note: While the target classes are mutually exclusive, i.e., only one class is positive in the target, the predicted probabilities need not to be exclusive. It is only required that the predicted probability distribution of entry is a valid one. Args: sparse (bool): Specifies whether labels use sparse format or not. Default: False. reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". If "none", do not perform reduction. Default: "none". Inputs: - **logits** (Tensor) - Tensor of shape (N, C). Data type must be float16 or float32. - **labels** (Tensor) - Tensor of shape (N, ). If `sparse` is True, The type of `labels` is int32 or int64. If `sparse` is False, the type of `labels` is the same as the type of `logits`. Outputs: Tensor, a tensor of the same shape and type as logits with the component-wise logistic losses. Raises: TypeError: If `sparse` is not a bool. TypeError: If `sparse` is True and dtype of `labels` is neither int32 not int64. TypeError: If `sparse` is False and dtype of `labels` is neither float16 not float32. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore >>> import numpy as np >>> import mindspore.nn as nn >>> from mindspore import Tensor >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mindspore.float32) >>> labels_np = np.array([1]).astype(np.int32) >>> labels = Tensor(labels_np) >>> output = loss(logits, labels) >>> print(output) [67.] """ def __init__(self, sparse=False, reduction='none'): super(SoftmaxCrossEntropyWithLogits, self).__init__(reduction) self.sparse = validator.check_bool(sparse, "sparse") self.reduction = reduction self.softmax_cross_entropy = _selected_ops.SoftmaxCrossEntropyWithLogits() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0., mstype.float32) self.is_cpugpu = context.get_context('device_target') in ["CPU", "GPU"] self.sparse_softmax_cross_entropy = P.SparseSoftmaxCrossEntropyWithLogits() def construct(self, logits, labels): _check_input_type('logits', logits, Tensor, self.cls_name) _check_input_type('labels', labels, Tensor, self.cls_name) if self.sparse: if self.reduction == 'mean': x = self.sparse_softmax_cross_entropy(logits, labels) return x labels = self.one_hot(labels, F.shape(logits)[-1], self.on_value, self.off_value) x = self.softmax_cross_entropy(logits, labels)[0] return self.get_loss(x)
@constexpr def _check_label_dtype(labels_dtype, cls_name): validator.check_type_name("labels", labels_dtype, [mstype.int32, mstype.int64], cls_name)
[docs]class DiceLoss(_Loss): r""" The Dice coefficient is a set similarity loss. It is used to calculate the similarity between two samples. The value of the Dice coefficient is 1 when the segmentation result is the best and 0 when the segmentation result is the worst. The Dice coefficient indicates the ratio of the area between two objects to the total area. The function is shown as follows: .. math:: dice = 1 - \frac{2 * (pred \bigcap true)}{pred \bigcup true} Args: smooth (float): A term added to the denominator to improve numerical stability. Should be greater than 0. Default: 1e-5. Inputs: - **logits** (Tensor) - Tensor of shape (N, ...). The data type must be float16 or float32. - **labels** (Tensor) - Tensor of shape (N, ...). The data type must be float16 or float32. Outputs: Tensor, a tensor of shape with the per-example sampled Dice losses. Raises: ValueError: If the dimensions are different. TypeError: If the type of `logits` or `labels` are not Tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> loss = nn.DiceLoss(smooth=1e-5) >>> logits = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32) >>> labels = Tensor(np.array([[0, 1], [1, 0], [0, 1]]), mstype.float32) >>> output = loss(logits, labels) >>> print(output) 0.38596618 """ def __init__(self, smooth=1e-5): super(DiceLoss, self).__init__() self.smooth = validator.check_positive_float(smooth, "smooth") self.reshape = P.Reshape() def construct(self, logits, label): _check_input_type('logits', logits, Tensor, self.cls_name) _check_input_type('labels', label, Tensor, self.cls_name) _check_shape(logits.shape, label.shape) intersection = self.reduce_sum(self.mul(logits.view(-1), label.view(-1))) unionset = self.reduce_sum(self.mul(logits.view(-1), logits.view(-1))) + \ self.reduce_sum(self.mul(label.view(-1), label.view(-1))) single_dice_coeff = (2 * intersection) / (unionset + self.smooth) dice_loss = 1 - single_dice_coeff return dice_loss
@constexpr def _check_shape(logits_shape, label_shape): validator.check('logits_shape', logits_shape, 'label_shape', label_shape) @constexpr def _check_ndim_multi(logits_dim, label_dim): if logits_dim < 2: raise ValueError("Logits dimension should be greater than 1, but got {}".format(logits_dim)) if label_dim < 2: raise ValueError("label dimension should be greater than 1, but got {}".format(label_dim)) @constexpr def _check_weights(weight_shape, label_shape): if weight_shape != label_shape: raise ValueError("The weight shape[0] should be equal to label.shape[1].")
[docs]class MultiClassDiceLoss(_Loss): r""" When there are multiple classifications, label is transformed into multiple binary classifications by one hot. For each channel section in the channel, it can be regarded as a binary classification problem, so it can be obtained through the binary loss of each category, and then the average value. Args: weights (Union[Tensor, None]): Tensor of shape `[num_classes, dim]`. The weight shape[0] should be equal to y shape[1]. ignore_indiex (Union[int, None]): Class index to ignore. activation (Union[str, Cell]): Activate function applied to the output of the fully connected layer, eg. 'ReLU'. Default: 'softmax'. Choose from: ['softmax', 'logsoftmax', 'relu', 'relu6', 'tanh','Sigmoid'] Inputs: - **logits** (Tensor) - Tensor of shape (N, C, ...). The logits dimension should be greater than 1. The data type must be float16 or float32. - **labels** (Tensor) - Tensor of shape (N, C, ...). The labels dimension should be greater than 1. The data type must be loat16 or float32. Outputs: Tensor, a tensor of shape with the per-example sampled MultiClass Dice Losses. Raises: ValueError: If the shapes are different. TypeError: If the type of inputs are not Tensor. ValueError: If the dimension of `logits` or `labels` is less than 2. ValueError: If the weight shape[0] is not equal to labels.shape[1]. ValueError: If weight is a tensor, but the dimension is not 2. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex=None, activation="softmax") >>> logits = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32) >>> labels = Tensor(np.array([[0, 1], [1, 0], [0, 1]]), mstype.float32) >>> output = loss(logits, labels) >>> print(output) 0.3283009 """ def __init__(self, weights=None, ignore_indiex=None, activation="softmax"): super(MultiClassDiceLoss, self).__init__() activation_list = ['softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'sigmoid'] self.binarydiceloss = DiceLoss(smooth=1e-5) self.weights = weights if weights is None else validator.check_value_type("weights", weights, [Tensor]) if isinstance(self.weights, Tensor) and self.weights.ndim != 2: raise ValueError("The weight dim should be 2, but got {}.".format(self.weights.ndim)) self.ignore_indiex = ignore_indiex if ignore_indiex is None else \ validator.check_value_type("ignore_indiex", ignore_indiex, [int]) if isinstance(activation, str) and activation not in activation_list: raise ValueError("The activation must be in {}, but got {}.".format(activation_list, activation)) self.activation = get_activation(activation) if isinstance(activation, str) else activation if self.activation is not None and not isinstance(self.activation, Cell): raise TypeError("The activation must be str or Cell, but got {}.".format(type(self.activation))) self.reshape = P.Reshape() def construct(self, logits, label): _check_input_type('logits', logits, Tensor, self.cls_name) _check_input_type('labels', label, Tensor, self.cls_name) _check_shape(logits.shape, label.shape) _check_ndim_multi(logits.ndim, label.ndim) total_loss = 0 if self.activation is not None: logits = self.activation(logits) for i in range(label.shape[1]): if i != self.ignore_indiex: dice_loss = self.binarydiceloss(logits[:, i], label[:, i]) if self.weights is not None: _check_weights(self.weights.shape[0], label.shape[1]) dice_loss *= self.weights[i] total_loss += dice_loss return total_loss/label.shape[1]
[docs]class SampledSoftmaxLoss(_Loss): r""" Computes the sampled softmax training loss. Args: num_sampled (int): The number of classes to randomly sample per batch. num_classes (int): The number of possible classes. num_true (int): The number of target classes per training example. sampled_values (Union[list, tuple]): List or tuple of (`sampled_candidates`, `true_expected_count`, `sampled_expected_count`) returned by a `*CandidateSampler` function. Default to None, `UniformCandidateSampler` is applied. remove_accidental_hits (bool): Whether to remove "accidental hits" where a sampled class equals one of the target classes. Default is True. seed (int): Random seed for candidate sampling. Default: 0 reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". If "none", do not perform reduction. Default: "none". Inputs: - **weights** (Tensor) - Tensor of shape (C, dim). - **bias** (Tensor) - Tensor of shape (C). The class biases. - **labels** (Tensor) - Tensor of shape (N, num_true), type `int64, int32`. The target classes. - **inputs** (Tensor) - Tensor of shape (N, dim). The forward activations of the input network. Outputs: Tensor, a tensor of shape (N) with the per-example sampled softmax losses. Raises: TypeError: If `sampled_values` is not a list or tuple. TypeError: If dtype of `labels` is neither int32 not int64. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. ValueError: If `num_sampled` or `num_true` is great than `num_classes`. ValueError: If length of `sampled_values` is not equal to 3. Supported Platforms: ``GPU`` Examples: >>> mindspore.set_seed(1) >>> loss = nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, num_true=1) >>> weights = Tensor(np.random.randint(0, 9, [7, 10]), mindspore.float32) >>> biases = Tensor(np.random.randint(0, 9, [7]), mindspore.float32) >>> labels = Tensor([0, 1, 2]) >>> inputs = Tensor(np.random.randint(0, 9, [3, 10]), mindspore.float32) >>> output = loss(weights, biases, labels, inputs) >>> print(output) [4.6051701e+01 1.4000047e+01 6.1989022e-06] """ def __init__(self, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, seed=0, reduction='none'): super(SampledSoftmaxLoss, self).__init__(reduction) if num_true < 1: raise ValueError(f"num_true {num_true} is less than 1.") if seed < 0: raise ValueError(f"seed {seed} is less than 0.") if num_sampled > num_classes: raise ValueError(f"num_sampled {num_sampled} is great than num_classes {num_classes}.") if num_true > num_classes: raise ValueError(f"num_true {num_true} is great than num_classes {num_classes}.") if sampled_values is not None: if not isinstance(sampled_values, (list, tuple)): raise TypeError(f"sampled_values {sampled_values} is not a list or tuple.") if len(sampled_values) != 3: raise ValueError(f"sampled_values size {len(sampled_values)} is not 3.") self.num_sampled = num_sampled self.num_classes = num_classes self.num_true = num_true self.sampled_values = sampled_values self.remove_accidental_hits = remove_accidental_hits self.seed = seed self.sampler = P.UniformCandidateSampler( num_true, num_sampled, True, num_classes, seed, remove_accidental_hits) self.cast = P.Cast() self.reshape = P.Reshape() self.shape = P.Shape() self.exp = P.Exp() self.log = P.Log() self.slice_op = P.Slice() self.matmul = P.MatMul(False, True) self.gather_v2 = P.Gather() self.reduce_max_true = P.ReduceMax(True) self.reduce_sum = P.ReduceSum() self.reduce_sum_true = P.ReduceSum(True) self.concat_dim0 = P.Concat(0) self.concat_dim1 = P.Concat(1) self.ones_like = P.OnesLike() self.zeros_like = P.ZerosLike() self.mul = P.Mul() self.expand_dims = P.ExpandDims() self.dtype = P.DType() def construct(self, weights, biases, labels, inputs): _check_input_type('weights', weights, Tensor, self.cls_name) _check_input_type('biases', biases, Tensor, self.cls_name) _check_input_type('labels', labels, Tensor, self.cls_name) _check_input_type('inputs', inputs, Tensor, self.cls_name) _check_label_dtype(self.dtype(labels), self.cls_name) logits, labels = self._compute_sampled_logits( weights=weights, biases=biases, labels=labels, inputs=inputs, num_true=self.num_true, sampled_values=self.sampled_values, subtract_log_q=True) x = self._softmax_cross_entropy(logits, labels) return x def _softmax_cross_entropy(self, logits, targets): stable_exp_logits = self.exp(logits - self.reduce_max_true(logits, 1)) pred = stable_exp_logits / self.reduce_sum_true(stable_exp_logits, 1) return -self.reduce_sum(targets * self.log(pred + 1.0e-20), 1) def _compute_sampled_logits(self, weights, biases, labels, inputs, num_true=1, sampled_values=None, subtract_log_q=True): """Helper function for SampledSoftmaxLoss functions. Computes sampled output training logits and labels suitable Note: In the case where num_true > 1, we assign to each target class the target probability 1 / num_true so that the target probabilities sum to 1 per-example. Args: weights (Tensor): Tensor of shape `[num_classes, dim]`. biases (Tensor): Tensor of shape `[num_classes]`. labels (Tensor): Tensor of shape `[batch_size, num_true]`. The target classes. inputs (Tensor): Tensor of shape `[batch_size, dim]`. The forward activations of the input network. num_true (int): The number of target classes per training example. sampled_values: a tuple of (`sampled_candidates`, `true_expected_count`, `sampled_expected_count`) returned by a `UniformCandidateSampler` function. subtract_log_q: A `bool`. whether to subtract the log expected count of the labels in the sample to get the logits of the true labels. Default is True. Returns: out_logits: `Tensor` object with shape `[batch_size, num_true + num_sampled]` out_labels: A Tensor object with the same shape as `out_logits`. """ if not labels.dtype == mstype.int32: labels = self.cast(labels, mstype.int32) labels = self.reshape(labels, (-1, num_true)) labels_flat = self.reshape(labels, (-1,)) # Sample the negative labels. # sampled shape: [num_sampled] tensor # true_expected_count shape is [batch_size, 1] tensor # sampled_expected_count shape is [num_sampled] tensor if sampled_values is None: sampled_values = self.sampler(labels) (sampled, true_expected_count, sampled_expected_count) = sampled_values if not sampled.dtype == mstype.int32: sampled = self.cast(sampled, mstype.int32) all_ids = self.concat_dim0((labels_flat, sampled)) all_w = self.gather_v2(weights, all_ids, 0) n_true = self.shape(labels_flat)[0] n_sampled = self.shape(sampled)[0] n_dim = self.shape(all_w)[1] # true_w shape is [batch_size * num_true, dim] true_w = self.slice_op(all_w, [0, 0], [n_true, n_dim]) sampled_w = self.slice_op(all_w, [n_true, 0], [n_sampled, n_dim]) sampled_logits = self.matmul(inputs, sampled_w) all_b = self.gather_v2(biases, all_ids, 0) true_b = self.slice_op(all_b, [0], [n_true]) sampled_b = self.slice_op(all_b, [n_true], [n_sampled]) # inputs shape is [batch_size, dim] # true_w shape is [batch_size * num_true, dim] # row_wise_dots is [batch_size, num_true, dim] new_true_w_shape = (-1, num_true, n_dim) row_wise_dots = self.mul(self.expand_dims(inputs, 1), self.reshape(true_w, new_true_w_shape)) # We want the row-wise dot plus biases which yields a # [batch_size, num_true] tensor of true_logits. dots_as_matrix = self.reshape(row_wise_dots, (-1, n_dim)) true_logits = self.reshape(self.reduce_sum(dots_as_matrix, 1), (-1, num_true)) true_b = self.reshape(true_b, (-1, num_true)) true_logits += true_b sampled_logits += sampled_b if subtract_log_q: # Subtract log of Q(l), prior probability that l appears in sampled. true_logits -= self.log(true_expected_count) sampled_logits -= self.log(sampled_expected_count) # Construct output logits and labels. The true labels/logits start at col 0. out_logits = self.concat_dim1((true_logits, sampled_logits)) # true_logits is a float tensor, ones_like(true_logits) is a float # tensor of ones. We then divide by num_true to ensure the per-example # labels sum to 1.0, i.e. form a proper probability distribution. out_labels = self.concat_dim1(( self.ones_like(true_logits) / num_true, self.zeros_like(sampled_logits) )) return out_logits, out_labels
[docs]class BCELoss(_Loss): r""" BCELoss creates a criterion to measure the binary cross entropy between the true labels and predicted labels. Set the predicted labels as :math:`x`, true labels as :math:`y`, the output loss as :math:`\ell(x, y)`. Let, .. math:: L = \{l_1,\dots,l_N\}^\top, \quad l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right] Then, .. math:: \ell(x, y) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} Note: Note that the predicted labels should always be the output of sigmoid and the true labels should be numbers between 0 and 1. Args: weight (Tensor, optional): A rescaling weight applied to the loss of each batch element. And it must have same shape and data type as `inputs`. Default: None reduction (str): Specifies the reduction to be applied to the output. Its value must be one of 'none', 'mean', 'sum'. Default: 'none'. Inputs: - **logits** (Tensor) - The input Tensor. The data type must be float16 or float32. - **labels** (Tensor) - The label Tensor which has same shape and data type as `logits`. Outputs: Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `logits`. Otherwise, the output is a scalar. Raises: TypeError: If dtype of `logits`, `labels` or `weight` (if given) is neither float16 not float32. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. ValueError: If shape of `logits` is not the same as `labels` or `weight` (if given). Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> weight = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 3.3, 2.2]]), mindspore.float32) >>> loss = nn.BCELoss(weight=weight, reduction='mean') >>> logits = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]), mindspore.float32) >>> labels = Tensor(np.array([[0, 1, 0], [0, 0, 1]]), mindspore.float32) >>> output = loss(logits, labels) >>> print(output) 1.8952923 """ def __init__(self, weight=None, reduction='none'): super(BCELoss, self).__init__() self.binary_cross_entropy = P.BinaryCrossEntropy(reduction=reduction) self.weight_one = weight is None if not self.weight_one: self.weight = weight else: self.ones = P.OnesLike() def construct(self, inputs, labels): _check_input_type('logits', inputs, Tensor, self.cls_name) _check_input_type('labels', labels, Tensor, self.cls_name) if self.weight_one: weight = self.ones(inputs) else: weight = self.weight loss = self.binary_cross_entropy(inputs, labels, weight) return loss
@constexpr def _check_reduced_shape_valid(ori_shape, reduced_shape, axis, cls_name): validator.check_reduce_shape(ori_shape, reduced_shape, axis, cls_name)
[docs]class CosineEmbeddingLoss(_Loss): r""" Computes the similarity between two tensors using cosine distance. Given two tensors `x1`, `x2`, and a Tensor label `y` with values 1 or -1: .. math:: loss(x_1, x_2, y) = \begin{cases} 1-cos(x_1, x_2), & \text{if } y = 1\\ max(0, cos(x_1, x_2)-margin), & \text{if } y = -1\\ \end{cases} Args: margin (float): Should be in [-1.0, 1.0]. Default 0.0. reduction (str): Specifies which reduction to be applied to the output. It must be one of "none", "mean", and "sum", meaning no reduction, reduce mean and sum on output, respectively. Default "mean". Inputs: - **logits_x1** (Tensor) - Input tensor. - **logits_x2** (Tensor) - Its shape and data type must be the same as `logits_x1`'s shape and data type. - **labels** (Tensor) - Contains value 1 or -1. Suppose the shape of `logits_x1` is :math:`(x_1, x_2, x_3,..., x_R)`, then the shape of `labels` must be :math:`(x_1, x_3, x_4, ..., x_R)`. Outputs: - **loss** (Tensor) - If `reduction` is "none", its shape is the same as `labels`'s shape, otherwise a scalar value will be returned. Raises: TypeError: If `margin` is not a float. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. ValueError: If `margin` is not in range [-1, 1]. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> logits_x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32) >>> logits_x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32) >>> labels = Tensor(np.array([1, -1]), mindspore.int32) >>> cosine_embedding_loss = nn.CosineEmbeddingLoss() >>> output = cosine_embedding_loss(logits_x1, logits_x2, labels) >>> print(output) 0.0003426075 """ def __init__(self, margin=0.0, reduction="mean"): super(CosineEmbeddingLoss, self).__init__(reduction) self.reduce_sum = P.ReduceSum() self.maximum = P.Maximum() validator.check_value_type("margin", margin, [float], self.cls_name) self.margin = validator.check_float_range(margin, -1.0, 1.0, Rel.INC_BOTH, "margin", self.cls_name) def construct(self, x1, x2, y): _check_input_type('logits_x1', x1, Tensor, self.cls_name) _check_input_type('logits_x2', x2, Tensor, self.cls_name) _check_input_type('labels', y, Tensor, self.cls_name) F.same_type_shape(x1, x2) _check_reduced_shape_valid(F.shape(x1), F.shape(y), (1,), self.cls_name) # if target > 0, 1-cosine(x1, x2) # else, max(0, cosine(x1, x2)-margin) prod_sum = self.reduce_sum(x1 * x2, (1,)) square1 = self.reduce_sum(F.square(x1), (1,)) square2 = self.reduce_sum(F.square(x2), (1,)) denom = F.sqrt(square1) * F.sqrt(square2) cosine = prod_sum / denom pos_value = 1.0 - cosine neg_value = self.maximum(cosine - self.margin, 0.0) zeros = F.zeros_like(cosine) pos_part = F.select(y == 1, pos_value, zeros) neg_part = F.select(y == -1, neg_value, zeros) output_unreduced = pos_part + neg_part return self.get_loss(output_unreduced)
[docs]class BCEWithLogitsLoss(_Loss): r""" Adds sigmoid activation function to input `predict`, and uses the given logits to compute binary cross entropy between the target and the output. Sets input predict as `X`, input target as `Y`, output as `L`. Then, .. math:: p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}} .. math:: L_{ij} = -[Y_{ij} * ln(p_{ij}) + (1 - Y_{ij})ln(1 - p_{ij})] Then, .. math:: \ell(x, y) = \begin{cases} L, & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases} Args: reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none'. If 'none', do not perform reduction. Default:'mean'. weight (Tensor, optional): A rescaling weight applied to the loss of each batch element. If not None, it must can be broadcast to a tensor with shape of `predict`, data type must be float16 or float32. Default: None. pos_weight (Tensor, optional): A weight of positive examples. Must be a vector with length equal to the number of classes. If not None, it must can be broadcast to a tensor with shape of `predict`, data type must be float16 or float32. Default: None. Inputs: - **logits** (Tensor) - Input logits. The data type must be float16 or float32. - **labels** (Tensor) - Ground truth label. Has the same data type and shape with `logits`. Outputs: Scalar. If reduction is 'none', it's a tensor with the same shape and type as input `logits`. Raises: TypeError: If data type of `logits` or `labels` is neither float16 nor float32. TypeError: If `weight` or `pos_weight` is Parameter. TypeError: If data type of `weight` or `pos_weight` is neither float16 nor float32. ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `logits`. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. Supported Platforms: ``Ascend`` Examples: >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) >>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32)) >>> loss = nn.BCEWithLogitsLoss() >>> output = loss(logits, labels) >>> print(output) 0.3463612 """ def __init__(self, reduction='mean', weight=None, pos_weight=None): super(BCEWithLogitsLoss, self).__init__() self.bce_with_logits_loss = P.BCEWithLogitsLoss(reduction=reduction) if isinstance(weight, Parameter): raise TypeError(f"For {self.cls_name}, weight can not be Parameter.") if isinstance(pos_weight, Parameter): raise TypeError(f"For {self.cls_name}, pos_weight can not be Parameter.") self.weight = weight self.pos_weight = pos_weight self.ones = P.OnesLike() def construct(self, predict, target): _check_input_type('logits', predict, Tensor, self.cls_name) _check_input_type('labels', target, Tensor, self.cls_name) ones_input = self.ones(predict) if self.weight is not None: weight = self.weight else: weight = ones_input if self.pos_weight is not None: pos_weight = self.pos_weight else: pos_weight = ones_input loss = self.bce_with_logits_loss(predict, target, weight, pos_weight) return loss
@constexpr def _check_ndim(predict_nidm, target_ndim): if predict_nidm < 2 or predict_nidm > 4: raise ValueError("The dimensions of predict and target should be between 2 and 4, but got" "predict dim {}.".format(predict_nidm)) if target_ndim < 2 or target_ndim > 4: raise ValueError("The dimensions of target and target should be between 2 and 4, but got" "target dim {}.".format(target_ndim)) if predict_nidm != target_ndim: raise ValueError("The dim of the predicted value and the dim of the target value must be equal, but got" "predict dim {} and target dim {}.".format(predict_nidm, target_ndim)) @constexpr def _check_channel_and_shape(predict, target): if predict == 1: raise ValueError("Single channel prediction is not supported.") if target not in (1, predict): raise ValueError("The target must have a channel or the same shape as predict." "If it has a channel, it should be the range [0, C-1], where C is the number of classes " f"inferred from 'predict': C={predict}.") @constexpr def _check_input_dtype(targets_dtype, cls_name): validator.check_type_name("targets", targets_dtype, [mstype.int32, mstype.int64, mstype.float16, mstype.float32], cls_name)
[docs]class FocalLoss(_Loss): r""" The loss function proposed by Kaiming team in their paper ``Focal Loss for Dense Object Detection`` improves the effect of image object detection. It is a loss function to solve the imbalance of categories and the difference of classification difficulty. If you want to learn more, please refer to the paper. `https://arxiv.org/pdf/1708.02002.pdf`. The function is shown as follows: .. math:: FL(p_t) = -(1-p_t)^\gamma log(p_t) Args: gamma (float): Gamma is used to adjust the steepness of weight curve in focal loss. Default: 2.0. weight (Union[Tensor, None]): A rescaling weight applied to the loss of each batch element. The dimension of weight should be 1. If None, no weights are applied. Default: None. reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". If "none", do not perform reduction. Default: "mean". Inputs: - **logits** (Tensor) - Tensor of shape should be (B, C) or (B, C, H) or (B, C, H, W). Where C is the number of classes. Its value is greater than 1. If the shape is (B, C, H, W) or (B, C, H), the H or product of H and W should be the same as labels. - **labels** (Tensor) - Tensor of shape should be (B, C) or (B, C, H) or (B, C, H, W). The value of C is 1 or it needs to be the same as predict's C. If C is not 1, the shape of target should be the same as that of predict, where C is the number of classes. If the shape is (B, C, H, W) or (B, C, H), the H or product of H and W should be the same as logits. Outputs: Tensor, it's a tensor with the same shape and type as input `logits`. Raises: TypeError: If the data type of ``gamma`` is not float.. TypeError: If ``weight`` is not a Tensor. ValueError: If ``labels`` dim different from ``logits``. ValueError: If ``labels`` channel is not 1 and ``labels`` shape is different from ``logits``. ValueError: If ``reduction`` is not one of 'none', 'mean', 'sum'. Supported Platforms: ``Ascend`` ``GPU`` Example: >>> logits = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32) >>> labels = Tensor([[1], [1], [0]], mstype.int32) >>> focalloss = nn.FocalLoss(weight=Tensor([1, 2]), gamma=2.0, reduction='mean') >>> output = focalloss(logits, labels) >>> print(output) 0.12516622 """ def __init__(self, weight=None, gamma=2.0, reduction='mean'): super(FocalLoss, self).__init__(reduction=reduction) self.gamma = validator.check_value_type("gamma", gamma, [float]) if weight is not None and not isinstance(weight, Tensor): raise TypeError("The type of weight should be Tensor, but got {}.".format(type(weight))) if isinstance(weight, Tensor) and weight.ndim != 1: raise ValueError("The dimension of weight should be 1, but got {}.".format(weight.ndim)) self.weight = weight self.expand_dims = P.ExpandDims() self.gather_d = P.GatherD() self.squeeze = P.Squeeze(axis=1) self.tile = P.Tile() self.cast = P.Cast() self.dtype = P.DType() self.logsoftmax = nn.LogSoftmax(1) def construct(self, predict, target): _check_input_type('logits', predict, Tensor, self.cls_name) _check_input_type('labels', target, Tensor, self.cls_name) targets = target _check_ndim(predict.ndim, targets.ndim) _check_channel_and_shape(predict.shape[1], targets.shape[1]) _check_input_dtype(self.dtype(targets), self.cls_name) if predict.ndim > 2: predict = predict.view(predict.shape[0], predict.shape[1], -1) targets = targets.view(targets.shape[0], targets.shape[1], -1) else: predict = self.expand_dims(predict, 2) targets = self.expand_dims(targets, 2) log_probability = self.logsoftmax(predict) if target.shape[1] == 1: log_probability = self.gather_d(log_probability, 1, self.cast(targets, mindspore.int32)) log_probability = self.squeeze(log_probability) probability = F.exp(log_probability) if self.weight is not None: convert_weight = self.weight[None, :, None] convert_weight = self.tile(convert_weight, (targets.shape[0], 1, targets.shape[2])) if target.shape[1] == 1: convert_weight = self.gather_d(convert_weight, 1, self.cast(targets, mindspore.int32)) convert_weight = self.squeeze(convert_weight) log_probability = log_probability * convert_weight weight = F.pows(-probability + 1.0, self.gamma) if target.shape[1] == 1: loss = (-weight * log_probability).mean(axis=1) else: loss = (-weight * targets * log_probability).mean(axis=-1) return self.get_loss(loss)