Source code for mindspore.nn.layer.quant

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Quantization aware training."""

from functools import partial
import numpy as np

from mindspore import nn
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.common.tensor import Tensor
from mindspore._checkparam import check_int_positive, check_bool, twice
from mindspore._checkparam import Rel
import mindspore.context as context

from .normalization import BatchNorm2d, BatchNorm1d
from .activation import get_activation, ReLU, LeakyReLU
from ..cell import Cell
from . import conv, basic
from ..._checkparam import ParamValidator as validator
from ...ops.operations import _quant_ops as Q

__all__ = [
    'Conv2dBnAct',
    'DenseBnAct',
    'FakeQuantWithMinMax',
    'Conv2dBnFoldQuant',
    'Conv2dBnWithoutFoldQuant',
    'Conv2dQuant',
    'DenseQuant',
    'ActQuant',
    'LeakyReLUQuant',
    'HSwishQuant',
    'HSigmoidQuant',
    'TensorAddQuant',
    'MulQuant',
]


[docs]class Conv2dBnAct(Cell): r""" A combination of convolution, Batchnorm, activation layer. This part is a more detailed overview of Conv2d op. Args: in_channels (int): The number of input channel :math:`C_{in}`. out_channels (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple]): The data type is int or a tuple of 2 integers. Specifies the height and width of the 2D convolution window. Single int means the value is for both height and width of the kernel. A tuple of 2 ints means the first value is for the height and the other is for the width of the kernel. stride (int): Specifies stride for all spatial dimensions with the same value. The value of stride must be greater than or equal to 1 and lower than any one of the height and width of the input. Default: 1. pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". padding (int): Implicit paddings on both sides of the input. Default: 0. dilation (int): Specifies the dilation rate to use for dilated convolution. If set to be :math:`k > 1`, there will be :math:`k - 1` pixels skipped for each sampling location. Its value must be greater than or equal to 1 and lower than any one of the height and width of the input. Default: 1. group (int): Splits filter into groups, `in_ channels` and `out_channels` must be divisible by the number of groups. Default: 1. has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel. It can be a Tensor, a string, an Initializer or a number. When a string is specified, values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones' and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of Initializer for more details. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible Initializer and string are the same as 'weight_init'. Refer to the values of Initializer for more details. Default: 'zeros'. has_bn (bool): Specifies to used batchnorm or not. Default: False. momentum (float): Momentum for moving average.Momentum value must be [0, 1].Default:0.9 eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0. Default: 1e-5. activation (Cell): Specifies activation type. The optional values are as following: 'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid', 'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None. alpha (float): Slope of the activation function at x < 0. Default: 0.2. after_fake(bool): Determin whether there must be a fake quantization operation after Cond2dBnAct. Inputs: - **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Examples: >>> net = Conv2dBnAct(120, 240, 4, has_bn=True, activation='ReLU') >>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) >>> net(input).shape (1, 240, 1024, 640) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros', has_bn=False, momentum=0.9, eps=1e-5, activation=None, alpha=0.2, after_fake=True): super(Conv2dBnAct, self).__init__() self.conv = conv.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, pad_mode=pad_mode, padding=padding, dilation=dilation, group=group, has_bias=has_bias, weight_init=weight_init, bias_init=bias_init) self.has_bn = validator.check_bool("has_bn", has_bn) self.has_act = activation is not None self.after_fake = after_fake if has_bn: self.batchnorm = BatchNorm2d(out_channels, eps, momentum) if activation == "leakyrelu": self.activation = LeakyReLU(alpha) else: self.activation = get_activation(activation) def construct(self, x): x = self.conv(x) if self.has_bn: x = self.batchnorm(x) if self.has_act: x = self.activation(x) return x
[docs]class DenseBnAct(Cell): r""" A combination of Dense, Batchnorm, and the activation layer. This part is a more detailed overview of Dense op. Args: in_channels (int): The number of channels in the input space. out_channels (int): The number of channels in the output space. weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. activation (Cell): The regularization function applied to the output of the layer, eg. 'ReLU'. Default: None. has_bn (bool): Specifies to use batchnorm or not. Default: False. activation (string): Specifies activation type. The optional values are as following: 'Softmax', 'LogSoftmax', 'ReLU', 'ReLU6', 'Tanh', 'GELU', 'Sigmoid', 'PReLU', 'LeakyReLU', 'h-Swish', and 'h-Sigmoid'. Default: None. after_fake(bool): Determin whether there must be a fake quantization operation after DenseBnAct. Inputs: - **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`. Outputs: Tensor of shape :math:`(N, out\_channels)`. Examples: >>> net = nn.DenseBnAct(3, 4) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> net(input) """ def __init__(self, in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, has_bn=False, activation=None, after_fake=True): super(DenseBnAct, self).__init__() self.dense = basic.Dense( in_channels, out_channels, weight_init, bias_init, has_bias) self.has_bn = validator.check_bool("has_bn", has_bn) self.has_act = activation is not None self.after_fake = after_fake if has_bn: self.batchnorm = BatchNorm1d(out_channels) self.activation = get_activation(activation) def construct(self, x): x = self.dense(x) if self.has_bn: x = self.batchnorm(x) if self.has_act: x = self.activation(x) return x
class BatchNormFoldCell(Cell): """ Batch normalization folded. Args: momentum (float): Momentum value must be [0, 1]. Default: 0.9. epsilon (float): A small float number to avoid dividing by 0. 1e-5 if dtype in float32 else 1e-3. Default: 1e-5. freeze_bn (int): Delay in steps at which computation switches from regular batch norm to frozen mean and std. Default: 0. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C, H, W)`. - **mean** (Tensor) - Tensor of shape :math:`(C,)`. - **variance** (Tensor) - Tensor of shape :math:`(C,)`. - **global_step** (Tensor) - Tensor to record current global step. Outputs: Tuple of 4 Tensor, the normalized input and the updated parameters. - **batch_mean** (Tensor) - Tensor of shape :math:`(C,)`. - **batch_std** (Tensor) - Tensor of shape :math:`(C,)`. - **running_mean** (Tensor) - Tensor of shape :math:`(C,)`. - **running_std** (Tensor) - Tensor of shape :math:`(C,)`. """ def __init__(self, momentum=0.9, epsilon=1e-5, freeze_bn=0): """Initialize batch norm fold layer""" super(BatchNormFoldCell, self).__init__() self.epsilon = epsilon self.is_gpu = context.get_context('device_target') == "GPU" if self.is_gpu: self.bn_train = Q.BatchNormFold(momentum, epsilon, is_training=True, freeze_bn=freeze_bn) self.bn_infer = Q.BatchNormFold(momentum, epsilon, is_training=False, freeze_bn=freeze_bn) else: self.bn_reduce = P.BNTrainingReduce() self.bn_update = Q.BatchNormFoldD(momentum, epsilon, is_training=True, freeze_bn=freeze_bn) def construct(self, x, mean, variance, global_step): if self.is_gpu: if self.training: batch_mean, batch_std, running_mean, running_std = self.bn_train(x, mean, variance, global_step) else: batch_mean, batch_std, running_mean, running_std = self.bn_infer(x, mean, variance, global_step) else: if self.training: x_sum, x_square_sum = self.bn_reduce(x) _, batch_mean, batch_std, running_mean, running_std, mean_updated, variance_updated = \ self.bn_update(x, x_sum, x_square_sum, mean, variance) P.Assign()(mean, mean_updated) P.Assign()(variance, variance_updated) else: batch_mean = P.ZerosLike()(variance) batch_std = P.OnesLike()(variance) running_mean = P.TensorAdd()(mean, 0.) running_std = P.Sqrt()(P.TensorAdd()(variance, self.epsilon)) return batch_mean, batch_std, running_mean, running_std
[docs]class FakeQuantWithMinMax(Cell): r""" Quantization aware op. This OP provides the fake quantization observer function on data with min and max. Args: min_init (int, float): The dimension of channel or 1(layer). Default: -6. max_init (int, float): The dimension of channel or 1(layer). Default: 6. ema (bool): The exponential Moving Average algorithm updates min and max. Default: False. ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. channel_axis (int): Quantization by channel axis. Default: 1. num_channels (int): declarate the min and max channel size, Default: 1. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): Whether the quantization algorithm is symmetric or not. Default: False. narrow_range (bool): Whether the quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - The input of FakeQuantWithMinMax. Outputs: Tensor, with the same type and shape as the `x`. Examples: >>> fake_quant = FakeQuantWithMinMax() >>> input_x = Tensor(np.array([[1, 2, 1], [-2, 0, -1]]), mindspore.float32) >>> result = fake_quant(input_x) """ def __init__(self, min_init=-6, max_init=6, ema=False, ema_decay=0.999, per_channel=False, channel_axis=1, num_channels=1, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): """Initialize FakeQuantWithMinMax layer""" super(FakeQuantWithMinMax, self).__init__() validator.check_type("min_init", min_init, [int, float]) validator.check_type("max_init", max_init, [int, float]) validator.check("min_init", min_init, "max_init", max_init, rel=Rel.LT) validator.check_integer('quant_delay', quant_delay, 0, Rel.GE) self.min_init = min_init self.max_init = max_init self.num_bits = num_bits self.ema = ema self.ema_decay = ema_decay self.per_channel = per_channel self.num_channels = num_channels self.channel_axis = channel_axis self.quant_delay = quant_delay self.symmetric = symmetric self.narrow_range = narrow_range self.is_ascend = context.get_context('device_target') == "Ascend" # init tensor min and max for fake quant op if self.per_channel: min_array = np.array([self.min_init] * self.num_channels).astype(np.float32) max_array = np.array([self.max_init] * self.num_channels).astype(np.float32) else: min_array = np.array([self.min_init]).astype(np.float32) max_array = np.array([self.max_init]).astype(np.float32) self.minq = Parameter(Tensor(min_array), name='quant_min', requires_grad=False) self.maxq = Parameter(Tensor(max_array), name='quant_max', requires_grad=False) # init fake quant relative op if self.per_channel: quant_fun = partial(Q.FakeQuantPerChannel, channel_axis=self.channel_axis) ema_fun = partial(Q.MinMaxUpdatePerChannel, channel_axis=self.channel_axis) else: quant_fun = Q.FakeQuantPerLayer ema_fun = Q.MinMaxUpdatePerLayer self.ema_update = ema_fun(ema=self.ema, ema_decay=self.ema_decay) if self.is_ascend: self.fake_quant_train = quant_fun(num_bits=self.num_bits, symmetric=self.symmetric, narrow_range=self.narrow_range, quant_delay=self.quant_delay) self.fake_quant_infer = self.fake_quant_train else: quant_fun = partial(quant_fun, ema=self.ema, ema_decay=ema_decay, num_bits=self.num_bits, symmetric=self.symmetric, narrow_range=self.narrow_range, quant_delay=self.quant_delay) self.fake_quant_train = quant_fun(training=True) self.fake_quant_infer = quant_fun(training=False) def extend_repr(self): s = 'num_bits={}, symmetric={}, narrow_range={}, ema={}({}), per_channel={}({}, {}), ' \ 'quant_delay={}, min_init={}, max_init={}'.format(self.num_bits, self.symmetric, self.narrow_range, self.ema, self.ema_decay, self.per_channel, self.channel_axis, self.num_channels, self.quant_delay, self.min_init, self.max_init) return s def construct(self, x): if self.training: min_up, max_up = self.ema_update(x, self.minq, self.maxq) P.Assign()(self.minq, min_up) P.Assign()(self.maxq, max_up) out = self.fake_quant_train(x, self.minq, self.maxq) else: out = self.fake_quant_infer(x, self.minq, self.maxq) return out
[docs]class Conv2dBnFoldQuant(Cell): r""" 2D convolution with BatchNormal op folded construct. This part is a more detailed overview of Conv2d op. Args: in_channels (int): The number of input channel :math:`C_{in}`. out_channels (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window. stride (int): Specifies stride for all spatial dimensions with the same value. pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". padding (int): Implicit paddings on both sides of the input. Default: 0. eps (float): Parameters for BatchNormal. Default: 1e-5. momentum (float): Parameters for BatchNormal op. Default: 0.997. has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'. beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta vector. Default: 'zeros'. gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma vector. Default: 'ones'. mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the mean vector. Default: 'zeros'. var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the variance vector. Default: 'ones'. fake (bool): Whether Conv2dBnFoldQuant Cell adds FakeQuantWithMinMax op. Default: True. per_channel (bool): FakeQuantWithMinMax Parameters. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): The Quantization delay parameters according to the global step. Default: 0. freeze_bn (int): The quantization freeze BatchNormal op is according to the global step. Default: 100000. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Examples: >>> conv2d_bn = nn.Conv2dBnFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid") >>> x = Tensor(np.random.randint(-2, 2, (2, 1, 1, 3)), mindspore.float32) >>> y = conv2d_bn(x) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, eps=1e-5, momentum=0.997, has_bias=False, weight_init='normal', bias_init='zeros', beta_init='zeros', gamma_init='ones', mean_init='zeros', var_init='ones', fake=True, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0, freeze_bn=100000): """Initialize Conv2dBnFoldQuant layer""" super(Conv2dBnFoldQuant, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = twice(kernel_size) self.stride = twice(stride) self.pad_mode = pad_mode self.padding = padding self.dilation = twice(dilation) self.group = group self.eps = eps self.momentum = momentum self.has_bias = has_bias self.quant_delay = quant_delay self.freeze_bn = freeze_bn self.fake = fake self.num_bits = num_bits self.per_channel = per_channel self.symmetric = symmetric self.narrow_range = narrow_range self.is_gpu = context.get_context('device_target') == "GPU" # initialize convolution op and Parameter if context.get_context('device_target') == "Ascend" and group > 1: validator.check_integer('group', group, in_channels, Rel.EQ) validator.check_integer('group', group, out_channels, Rel.EQ) self.conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=self.kernel_size, pad_mode=pad_mode, pad=padding, stride=self.stride, dilation=self.dilation) weight_shape = [1, in_channels, *self.kernel_size] channel_axis = 1 else: self.conv = P.Conv2D(out_channel=out_channels, kernel_size=self.kernel_size, pad_mode=pad_mode, pad=padding, stride=self.stride, dilation=self.dilation, group=group) weight_shape = [out_channels, in_channels // group, *self.kernel_size] channel_axis = 0 self.weight = Parameter(initializer(weight_init, weight_shape), name='weight') self.bias_add = P.BiasAdd() if check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') else: self.bias = None # initialize BatchNorm Parameter self.gamma = Parameter(initializer(gamma_init, [out_channels]), name='gamma') self.beta = Parameter(initializer(beta_init, [out_channels]), name='beta') self.moving_mean = Parameter(initializer(mean_init, [out_channels]), name='moving_mean', requires_grad=False) self.moving_variance = Parameter(initializer(var_init, [out_channels]), name='moving_variance', requires_grad=False) # initialize fake ops self.fake_quant_weight = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=False, per_channel=per_channel, channel_axis=channel_axis, num_channels=out_channels, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.batchnorm_fold = BatchNormFoldCell(epsilon=eps, momentum=momentum, freeze_bn=freeze_bn) self.correct_mul = Q.CorrectionMul(channel_axis) if context.get_context('device_target') == "Ascend": self.batchnorm_fold2_train = Q.BatchNormFold2_D(freeze_bn=freeze_bn) self.batchnorm_fold2_infer = Q.BatchNormFold2_D(freeze_bn=0) elif context.get_context('device_target') == "GPU": self.batchnorm_fold2_train = Q.BatchNormFold2(freeze_bn=freeze_bn) self.batchnorm_fold2_infer = Q.BatchNormFold2(freeze_bn=0) else: raise ValueError("Unsupported platform: {}".format(context.get_context('device_target'))) self.step = Parameter(initializer('normal', [1], dtype=mstype.int32), name='step', requires_grad=False) self.one = Tensor(1, mstype.int32) self.assignadd = P.AssignAdd() def extend_repr(self): s = 'in_channels={}, out_channels={}, kernel_size={}, stride={}, ' \ 'pad_mode={}, padding={}, dilation={}, group={}, ' \ 'fake={}, freeze_bn={}, momentum={}, quant_delay={}'.format(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.pad_mode, self.padding, self.dilation, self.group, self.fake, self.freeze_bn, self.momentum, self.quant_delay) return s def construct(self, x): out_conv = self.conv(x, self.weight) if self.has_bias: out_conv = self.bias_add(out_conv, self.bias) # BN fold1 batch_mean, batch_std, running_mean, running_std = self.batchnorm_fold(out_conv, self.moving_mean, self.moving_variance, self.step) # fake weight weight = self.correct_mul(self.weight, self.gamma, running_std) if self.fake: weight = self.fake_quant_weight(weight) out = self.conv(x, weight) if self.has_bias: out = self.bias_add(out, self.bias) # BN fold2 if self.is_gpu: if self.training: out = self.batchnorm_fold2_train(out, self.beta, self.gamma, batch_std, batch_mean, running_std, running_mean, self.step) F.control_depend(out, self.assignadd(self.step, self.one)) else: out = self.batchnorm_fold2_infer(out, self.beta, self.gamma, batch_std, batch_mean, running_std, running_mean, self.step) else: if self.training: out = self.batchnorm_fold2_train(out, self.beta, self.gamma, batch_std, batch_mean, running_std) F.control_depend(out, self.assignadd(self.step, self.one)) else: out = self.batchnorm_fold2_infer(out, self.beta, self.gamma, running_std, running_mean, running_std) return out
[docs]class Conv2dBnWithoutFoldQuant(Cell): r""" 2D convolution + batchnorm without fold with fake quant construct. This part is a more detailed overview of Conv2d op. Args: in_channels (int): The number of input channel :math:`C_{in}`. out_channels (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window. stride (int): Specifies stride for all spatial dimensions with the same value. Default: 1. pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". padding (int): Implicit paddings on both sides of the input. Default: 0. dilation (int): Specifies the dilation rate to use for dilated convolution. Default: 1. group (int): Splits filter into groups, `in_ channels` and `out_channels` must be divisible by the number of groups. Default: 1. has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. eps (float): Parameters for BatchNormal. Default: 1e-5. momentum (float): Parameters for BatchNormal op. Default: 0.997. weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'. per_channel (bool): FakeQuantWithMinMax Parameters. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Examples: >>> conv2d_quant = nn.Conv2dBnWithoutFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid") >>> x = Tensor(np.random.randint(-2, 2, (2, 1, 1, 3)), mstype.float32) >>> y = conv2d_quant(x) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, eps=1e-5, momentum=0.997, weight_init='normal', bias_init='zeros', per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(Conv2dBnWithoutFoldQuant, self).__init__() if isinstance(kernel_size, int): self.kernel_size = (kernel_size, kernel_size) else: self.kernel_size = kernel_size self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) self.has_bias = has_bias self.stride = twice(stride) self.dilation = twice(dilation) self.pad_mode = pad_mode self.padding = padding self.group = group self.quant_delay = quant_delay self.bias_add = P.BiasAdd() if check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') else: self.bias = None # initialize convolution op and Parameter if context.get_context('device_target') == "Ascend" and group > 1: validator.check_integer('group', group, in_channels, Rel.EQ) validator.check_integer('group', group, out_channels, Rel.EQ) self.conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=self.kernel_size, pad_mode=pad_mode, pad=padding, stride=self.stride, dilation=self.dilation) weight_shape = [1, in_channels, *self.kernel_size] channel_axis = 1 else: self.conv = P.Conv2D(out_channel=self.out_channels, kernel_size=self.kernel_size, mode=1, pad_mode=self.pad_mode, pad=self.padding, stride=self.stride, dilation=self.dilation, group=self.group) weight_shape = [out_channels, in_channels // group, *self.kernel_size] channel_axis = 0 self.weight = Parameter(initializer(weight_init, weight_shape), name='weight') self.fake_quant_weight = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=False, per_channel=per_channel, channel_axis=channel_axis, num_channels=out_channels, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.batchnorm = BatchNorm2d(out_channels, eps=eps, momentum=momentum) def construct(self, x): weight = self.fake_quant_weight(self.weight) out = self.conv(x, weight) if self.has_bias: out = self.bias_add(out, self.bias) out = self.batchnorm(out) return out def extend_repr(self): s = 'in_channels={}, out_channels={}, kernel_size={}, stride={}, ' \ 'pad_mode={}, padding={}, dilation={}, group={}, ' \ 'has_bias={}, quant_delay={}'.format(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.pad_mode, self.padding, self.dilation, self.group, self.has_bias, self.quant_delay) return s
[docs]class Conv2dQuant(Cell): r""" 2D convolution with fake quant op layer. This part is a more detailed overview of Conv2d op. Args: in_channels (int): The number of input channel :math:`C_{in}`. out_channels (int): The number of output channel :math:`C_{out}`. kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window. stride (int): Specifies stride for all spatial dimensions with the same value. Default: 1. pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". padding (int): Implicit paddings on both sides of the input. Default: 0. dilation (int): Specifies the dilation rate to use for dilated convolution. Default: 1. group (int): Splits filter into groups, `in_ channels` and `out_channels` must be divisible by the number of groups. Default: 1. has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'. per_channel (bool): FakeQuantWithMinMax Parameters. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Examples: >>> conv2d_quant = nn.Conv2dQuant(1, 6, kernel_size= (2, 2), stride=(1, 1), pad_mode="valid") >>> x = Tensor(np.random.randint(-2, 2, (2, 1, 1, 3)), mindspore.float32) >>> y = conv2d_quant(x) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros', per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(Conv2dQuant, self).__init__() if isinstance(kernel_size, int): self.kernel_size = (kernel_size, kernel_size) else: self.kernel_size = kernel_size self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) self.has_bias = has_bias self.stride = twice(stride) self.dilation = twice(dilation) self.pad_mode = pad_mode self.padding = padding self.group = group self.quant_delay = quant_delay weight_shape = [out_channels, in_channels // group, *self.kernel_size] self.weight = Parameter(initializer(weight_init, weight_shape), name='weight') self.bias_add = P.BiasAdd() if check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') else: self.bias = None self.conv = P.Conv2D(out_channel=self.out_channels, kernel_size=self.kernel_size, mode=1, pad_mode=self.pad_mode, pad=self.padding, stride=self.stride, dilation=self.dilation, group=self.group) self.fake_quant_weight = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=False, per_channel=per_channel, channel_axis=0, num_channels=out_channels, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) def construct(self, x): weight = self.fake_quant_weight(self.weight) out = self.conv(x, weight) if self.has_bias: return self.bias_add(out, self.bias) return out def extend_repr(self): s = 'in_channels={}, out_channels={}, kernel_size={}, stride={}, ' \ 'pad_mode={}, padding={}, dilation={}, group={}, ' \ 'has_bias={}, quant_delay={}'.format(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.pad_mode, self.padding, self.dilation, self.group, self.has_bias, self.quant_delay) return s
[docs]class DenseQuant(Cell): r""" The fully connected layer with fake quant op. This part is a more detailed overview of Dense op. Args: in_channels (int): The dimension of the input space. out_channels (int): The dimension of the output space. weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. activation (str): The regularization function applied to the output of the layer, eg. 'relu'. Default: None. per_channel (bool): FakeQuantWithMinMax Parameters. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Examples: >>> dense_quant = nn.DenseQuant(3, 6) >>> input_x = Tensor(np.random.randint(-2, 2, (2, 3)), mindspore.float32) >>> result = dense_quant(input_x) """ def __init__( self, in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(DenseQuant, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) self.has_bias = check_bool(has_bias) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ weight_init.shape[1] != in_channels: raise ValueError("weight_init shape error") self.weight = Parameter(initializer( weight_init, [out_channels, in_channels]), name="weight") if self.has_bias: if isinstance(bias_init, Tensor): if bias_init.dim() != 1 or bias_init.shape[0] != out_channels: raise ValueError("bias_init shape error") self.bias = Parameter(initializer( bias_init, [out_channels]), name="bias") self.matmul = P.MatMul(transpose_b=True) self.bias_add = P.BiasAdd() self.activation = get_activation(activation) self.activation_flag = self.activation is not None self.fake_quant_weight = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=False, per_channel=per_channel, channel_axis=0, num_channels=out_channels, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay)
[docs] def construct(self, x): """Use operators to construct the Dense layer.""" output = self.fake_quant_weight(self.weight) output = self.matmul(x, output) if self.has_bias: output = self.bias_add(output, self.bias) if self.activation_flag: return self.activation(output) return output
[docs] def extend_repr(self): """A pretty print for Dense layer.""" str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}'.format( self.in_channels, self.out_channels, self.weight, self.has_bias) if self.has_bias: str_info = str_info + ', bias={}'.format(self.bias) if self.activation_flag: str_info = str_info + ', activation={}'.format(self.activation) return str_info
class _QuantActivation(Cell): r""" Base class for quantization aware training activation function. Add Fake Quant OP after activation OP. """ def get_origin(self): raise NotImplementedError
[docs]class ActQuant(_QuantActivation): r""" Quantization aware training activation function. Add the fake quant op to the end of activation op, by which the output of activation op will be truncated. Please check `FakeQuantWithMinMax` for more details. Args: activation (Cell): Activation cell class. ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global steps. Default: 0. Inputs: - **x** (Tensor) - The input of ReLU6Quant. Outputs: Tensor, with the same type and shape as the `x`. Examples: >>> act_quant = nn.ActQuant(nn.ReLU()) >>> input_x = Tensor(np.array([[1, 2, -1], [-2, 0, -1]]), mindspore.float32) >>> result = act_quant(input_x) """ def __init__(self, activation, ema_decay=0.999, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(ActQuant, self).__init__() self.fake_quant_act = FakeQuantWithMinMax(min_init=0, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.act = activation def construct(self, x): x = self.act(x) x = self.fake_quant_act(x) return x def get_origin(self): return self.act
[docs]class LeakyReLUQuant(_QuantActivation): r""" LeakyReLUQuant activation function. Add Fake Quant OP after HSwish OP. This part is a more detailed overview of HSwish op. Args: activation (Cell): Activation cell class. ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - The input of LeakyReLUQuant. Outputs: Tensor, with the same type and shape as the `x`. Examples: >>> activation = nn.LeakyReLUQuant(nn.LeakyReLU()) >>> input = Tensor(np.array([[1, 2, 1], [-2, 0, -1]]), mindspore.float32) >>> result = activation(input) """ def __init__(self, activation, ema_decay=0.999, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(LeakyReLUQuant, self).__init__() self.fake_quant_act_before = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.fake_quant_act_after = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) if issubclass(activation.__class__, nn.LeakyReLU): self.act = activation else: raise ValueError("Activation should be `nn.LeakyReLU`") def construct(self, x): x = self.fake_quant_act_before(x) x = self.act(x) x = self.fake_quant_act_after(x) return x def get_origin(self): return self.act
[docs]class HSwishQuant(_QuantActivation): r""" HSwishQuant activation function. Add Fake Quant OP after HSwish OP. This part is a more detailed overview of HSwish op. Args: activation (Cell): Activation cell class. ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): Whether the quantization algorithm is symmetric or not. Default: False. narrow_range (bool): Whether the quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - The input of HSwishQuant. Outputs: Tensor, with the same type and shape as the `x`. Examples: >>> activation = nn.HSwishQuant(nn.HSwish()) >>> input = Tensor(np.array([[1, 2, 1], [-2, 0, -1]]), mindspore.float32) >>> result = activation(input) """ def __init__(self, activation, ema_decay=0.999, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(HSwishQuant, self).__init__() self.fake_quant_act_before = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.fake_quant_act_after = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) if issubclass(activation.__class__, nn.HSwish): self.act = activation else: raise ValueError("Activation should be `nn.HSwish`") def construct(self, x): x = self.fake_quant_act_before(x) x = self.act(x) x = self.fake_quant_act_after(x) return x def get_origin(self): return self.act
[docs]class HSigmoidQuant(_QuantActivation): r""" HSigmoidQuant activation function. Add Fake Quant OP before and after HSigmoid OP. This part is a more detailed overview of HSigmoid op. Args: activation (Cell): Activation cell class. ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): Whether the quantization algorithm is symmetric or not. Default: False. narrow_range (bool): Whether the quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - The input of HSigmoidQuant. Outputs: Tensor, with the same type and shape as the `x`. Examples: >>> activation = nn.HSigmoidQuant(nn.HSigmoid()) >>> input = Tensor(np.array([[1, 2, 1], [-2, 0, -1]]), mindspore.float32) >>> result = activation(input) """ def __init__(self, activation, ema_decay=0.999, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(HSigmoidQuant, self).__init__() self.fake_quant_act_before = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.fake_quant_act_after = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) if issubclass(activation.__class__, nn.HSigmoid): self.act = activation else: raise ValueError("Activation should be `nn.HSigmoid`") def construct(self, x): x = self.fake_quant_act_before(x) x = self.act(x) x = self.fake_quant_act_after(x) return x def get_origin(self): return self.act
[docs]class TensorAddQuant(Cell): r""" Add Fake Quant OP after TensorAdd OP. This part is a more detailed overview of TensorAdd op. Args: ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - The input of TensorAddQuant. Outputs: Tensor, with the same type and shape as the `x`. Examples: >>> add_quant = nn.TensorAddQuant() >>> input_x = Tensor(np.array([[1, 2, 1], [-2, 0, -1]]), mindspore.float32) >>> input_y = Tensor(np.random.randint(-2, 2, (2, 3)), mindspore.float32) >>> result = add_quant(input_x, input_y) """ def __init__(self, ema_decay=0.999, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(TensorAddQuant, self).__init__() self.fake_quant_act = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.add = P.TensorAdd() def construct(self, x1, x2): x = self.add(x1, x2) x = self.fake_quant_act(x) return x
[docs]class MulQuant(Cell): r""" Add Fake Quant OP after Mul OP. This part is a more detailed overview of Mul op. Args: ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. per_channel (bool): Quantization granularity based on layer or on channel. Default: False. num_bits (int): The bit number of quantization, supporting 4 and 8bits. Default: 8. symmetric (bool): The quantization algorithm is symmetric or not. Default: False. narrow_range (bool): The quantization algorithm uses narrow range or not. Default: False. quant_delay (int): Quantization delay parameters according to the global step. Default: 0. Inputs: - **x** (Tensor) - The input of MulQuant. Outputs: Tensor, with the same type and shape as the `x`. """ def __init__(self, ema_decay=0.999, per_channel=False, num_bits=8, symmetric=False, narrow_range=False, quant_delay=0): super(MulQuant, self).__init__() self.fake_quant_act = FakeQuantWithMinMax(min_init=-6, max_init=6, ema=True, ema_decay=ema_decay, per_channel=per_channel, num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, quant_delay=quant_delay) self.mul = P.Mul() def construct(self, x1, x2): x = self.mul(x1, x2) x = self.fake_quant_act(x) return x
class QuantBlock(Cell): r""" A quant block of Conv/Dense, activation layer for Ascend deploy. Calculate Conv or Dense in Int8, with Quant and DeQuant. Notes: This block is only for deploy, and not trainable. Args: in_channels (int): The number of channels in the input space. out_channels (int): The number of channels in the output space. weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. activation (str): The regularization function applied to the output of the layer, eg. 'relu'. Default: None. batchnorm (bool): Specifies to used batchnorm or not. Default: None. activation (string): Specifies activation type. The optional values are as following: 'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid', 'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None. Inputs: - **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`. Outputs: Tensor of shape :math:`(N, out\_channels)`. Examples: >>> net = nn.Dense(3, 4) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> net(input) """ def __init__(self, core_op, weight, quant_op, dequant_op, dequant_scale, bias=None, activation=None): super(QuantBlock, self).__init__() self.core_op = core_op self.weight = weight self.quant = quant_op self.dequant = dequant_op self.dequant_scale = dequant_scale self.bias = bias self.has_bias = bias is not None self.activation = activation self.has_act = activation is not None if isinstance(activation, ReLU): self.activation = None self.has_act = False self.dequant.add_prim_attr("relu_flag", True) self.bias_add = P.BiasAdd() def construct(self, x): x = self.quant(x) if self.has_bias: x = self.core_op(x, self.weight, self.bias) else: x = self.core_op(x, self.weight) if self.has_act: x = self.activation(x) x = self.dequant(x, self.dequant_scale) return x def extend_repr(self): str_info = f'quant={self.quant}, core_op={type(self.core_op)}, weight=shape[{self.weight.shape}]' if self.has_bias: str_info = str_info + f', bias=shape[{self.bias.shape}]' if self.has_act: str_info = str_info + f', activation={self.activation}' str_info = str_info + f', dequant={self.dequant}' return str_info class QuantMindirBlock(Cell): """A quant binary block of Conv/Dense, activation layer for export MINDIR model. Args: core_op (Cell): The operation cell. weight (Tensor): The weigth of the cell. bias (Tensor): The bias of the cell. Default: None. activation (str): The regularization function applied to the output of the layer, eg. 'relu'. Default: None. param_dict (dict): The information of the cell. """ def __init__(self, core_op, weight, bias=None, activation=None, param_dict=None): super(QuantMindirBlock, self).__init__() self.core_op = core_op if activation is not None: self.core_op.add_prim_attr("activation_name", activation.__class__.__name__) self.core_op.add_prim_attr("filter_maxq", Tensor(param_dict["filter_maxq"])) self.core_op.add_prim_attr("filter_minq", Tensor(param_dict["filter_minq"])) self.core_op.add_prim_attr("output_maxq", Tensor(param_dict["output_maxq"])) self.core_op.add_prim_attr("output_minq", Tensor(param_dict["output_minq"])) self.core_op.add_prim_attr("symmetric", Tensor(param_dict["symmetric"])) if hasattr(core_op, 'pad_mode'): self.core_op.add_prim_attr("pad_mode", core_op.pad_mode) self.core_op.add_prim_attr("num_bits", Tensor(8)) self.core_op.add_prim_attr("narrow_range", Tensor(False)) if param_dict["input_maxq"] is not None: self.core_op.add_prim_attr("input_maxq", Tensor(param_dict["input_maxq"])) self.core_op.add_prim_attr("input_minq", Tensor(param_dict["input_minq"])) else: self.core_op.add_prim_attr("mean", Tensor(param_dict["mean"])) self.core_op.add_prim_attr("std_dev", Tensor(param_dict["std_dev"])) self.weight = weight self.bias = bias self.has_bias = bias is not None self.activation = activation self.has_act = activation is not None if isinstance(activation, ReLU): self.activation = None self.has_act = False def construct(self, x): if self.has_bias: x = self.core_op(x, self.weight, self.bias) else: x = self.core_op(x, self.weight) return x def extend_repr(self): str_info = f'core_op={type(self.core_op)}, weight=shape[{self.weight.shape}]' if self.has_bias: str_info = str_info + f', bias=shape[{self.bias.shape}]' if self.has_act: str_info = str_info + f', activation={self.activation}' return str_info