Source code for mindspore.nn.distribution.bernoulli

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Bernoulli Distribution"""
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from .distribution import Distribution
from ._utils.utils import cast_to_tensor, check_prob
from ...common import dtype as mstype

[docs]class Bernoulli(Distribution): """ Example class: Bernoulli Distribution. Args: probs (int, float, list, numpy.ndarray, Tensor, Parameter): probability of 1 as outcome. seed (int): seed to use in sampling. Default: 0. dtype (mindspore.dtype): type of the distribution. Default: mstype.int32. name (str): name of the distribution. Default: Bernoulli. Note: probs should be proper probabilities (0 <= p <= 1). Examples: >>> # To initialize a Bernoulli distribution which has equal probability of getting 1 and 0 >>> b = nn.Bernoulli(0.5, dtype = mstype.int32) >>> # The following create two independent Bernoulli distributions >>> b = nn.Bernoulli([0.7, 0.2], dtype = mstype.int32) """ def __init__(self, probs=None, seed=0, dtype=mstype.int32, name="Bernoulli"): """ Constructor of Bernoulli distribution. """ param = dict(locals()) super(Bernoulli, self).__init__(dtype, name, param) if probs is not None: self._probs = cast_to_tensor(probs) check_prob(self._probs) else: self._probs = probs self.seed = seed # ops needed for the class self.log = P.Log() self.add = P.TensorAdd() self.mul = P.Mul() self.sqrt = P.Sqrt() self.realdiv = P.RealDiv() self.shape = P.Shape() self.const = P.ScalarToArray() self.less = P.Less() self.cast = P.Cast() self.erf = P.Erf() self.sqrt = P.Sqrt() def extend_repr(self): str_info = f'probs = {self._probs}' return str_info
[docs] def probs(self): """ Returns the probability for the outcome is 1. """ return self._probs
def _mean(self, name='mean', probs1=None): r""" .. math:: MEAN(B) = probs1 """ if name == 'mean': return self._probs if probs1 is None else probs1 return None def _var(self, name='var', probs1=None): r""" .. math:: VAR(B) = probs1 * probs0 """ if name in ('sd', 'var'): probs1 = self._probs if probs1 is None else probs1 probs0 = self.add(1, -1 * probs1) return self.mul(probs0, probs1) return None def _prob(self, name, value, probs=None): r""" pmf of Bernoulli distribution. Args: name (str): name of the function. Should be "prob" when passed in from construct. value (Tensor): a Tensor composed of only zeros and ones. probs (Tensor): probability of outcome is 1. Default: self._probs. .. math:: pmf(k) = probs1 if k = 1; pmf(k) = probs0 if k = 0; """ if name in ('prob', 'log_prob'): probs1 = self._probs if probs is None else probs probs0 = self.add(1, -1 * probs1) return self.add(self.mul(probs1, value), self.mul(probs0, self.add(1, -1 * value))) return None def _kl_loss(self, name, dist, probs1_b, probs1_a=None): r""" Evaluate bernoulli-bernoulli kl divergence, i.e. KL(a||b). Args: name (str): name of the funtion. Should always be "kl_loss" when passed in from construct. dist (str): type of the distributions. Should be "Bernoulli" in this case. probs1_b (Tensor): probs1 of distribution b. probs1_a (Tensor): probs1 of distribution a. Default: self._probs. .. math:: KL(a||b) = probs1_a * \log(\fract{probs1_a}{probs1_b}) + probs0_a * \log(\fract{probs0_a}{probs0_b}) """ if name == 'kl_loss' and dist == 'Bernoulli': probs1_a = self._probs if probs1_a is None else probs1_a probs0_a = self.add(1, -1 * probs1_a) probs0_b = self.add(1, -1 * probs1_b) return self.add(probs1_a * self.log(self.realdiv(probs1_a, probs1_b)), probs0_a * self.log(self.realdiv(probs0_a, probs0_b))) return None def _sample(self, name, shape=(), probs=None): """ Sampling. Args: name (str): name of the function. Should always be 'sample' when passed in from construct. shape (tuple): shape of the sample. Default: (). probs (Tensor): probs1 of the samples. Default: self._probs. Returns: Tensor, shape is shape + batch_shape. """ if name == 'sample': probs1 = self._probs if probs is None else probs batch_shape = self.shape(probs1) sample_shape = shape + batch_shape mean_zero = self.const(0.0) sd_one = self.const(1.0) sqrt_two = self.sqrt(self.const(2.0)) sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two))) sample = self.less(sample_uniform, probs1) sample = self.cast(sample, self._dtype) return sample return None